The Effect Of Boron Compounds The Pore Formation And Surface Area Of Activated Carbon Obtained From Pistachio Shell


Özet Görüntüleme: 182 / PDF İndirme: 59

Yazarlar

DOI:

https://doi.org/10.5281/zenodo.6798954

Anahtar Kelimeler:

Pistachio shell, boron compounds, activated carbon, BET surface area

Özet

Fıstık kabuklarından elde edilen aktif karbon(AK)’ların yüzey gözenek oluşumu ve yüzey alanına bor bileşiklerinin etkisi rapor edildi. Fıstık kabukları iki farklı metot ve 5 farklı bileşik kullanılarak aktive edildi. Bu metot ve bileşikler hidro klorik (HCl) yıkama/bekletme, NaOH çözeltisiyle yıkama/bekletme ve borik asit, boraks ve amonyum biborate gibi bor bileşikleri kullanılarak bu çözeltilerde bekletme idi. Kabuklar 900oC’de 45 dakika H2O’da yıkanmış CO2 atmosferinde karbonize edildi. Elde edilen sonuçlar işlenmemiş sadece aynı koşullarda karbonize edilmiş kabuklarla kıyaslandı. Kabuklar %10 amonyum biborate çözeltisinde bekletme (ABB-PS) ile 1518m2/g’lık BET yüzey alanına, 2.086cc/g’lık DR gözenek hacmine ve 5865,632m2/g’lık DR mikro gözenek yüzey alanına sahip olduğu bulundu. Ayrıca, elde edilen AK’lar 18,932Ao gözenek genişliğine ve 6,867kJ/mol’luk adsorpsiyon enerjisine sahipti. ABB-PS’nin daha düşük adsorpsiyon enerjisine, daha yüksek gözenek hacmi ve daha yüksek mikro gözenek yüzey alanına sahip olduğu belirlendi. Fıstık kabuklarından elde edilen AK yüzey alanı ve gözenek yapısı, aynı koşullar altında diğer bileşiklere kıyasla borlu bileşiklerle geliştirildiği yargısına varıldı. 

Referanslar

Adekunle, M. A., Farid, N. A. 2015. Recent development in the production of activated carbon electrodes from agricultural waste biomass for supercapacitors: a review, renewable and sustainable energy reviews, 52: 1282-93.

Barrett, E. P., Joyner, L. C., Halenda, P. H. 1951. The determination of pore volume and area distributions in porous substances. I. computations from nitrogen isotherms. J. Am. Chem. Soc. 73: 373-380.

Carlos, J., Moreno, P., Giraldo, L. 2021. Heavy metal ions adsorption from wastewater using activated carbon from orange peel”, journal of chemistry, vol. 9, article ID: 383742, 12 pages.

Carrott, P.J.M., Nabais, J.M.V., Ribeiro Carrott, M.M.L., Pajares, J.A., 2001. Preparation of activated carbon fibres from acrylic textile fibres, carbon, 39(10): 1543-55.

Dolas, H., Sahin, O., Saka, C., Demir, H. 2011. A new method on producing high surface area activated carbon: The effect of salt on the surface aarea and the pore size distribution of activated carbon prepared from pistachio shell, Chemical Engineering Journal, 166: 191-197.

Dubinin, M.M., Zaverina, E.D., Radushkevich, L.V. 1947. Adsorption Cycle Modeling. Zh. Fiz. Khim. 21: 1351-1362.

Fan, T., Zhao, J., Chen, Y., Wang, M., Wang, X., Wang, S., Chen, X., Lu, A., and Zha. S, 2021. Coexistence and Adsorption Properties of Heavy Metals by Polypropylene Microplastics, Adsorption Science & Technology, Hindawi, Article ID 4938749, 12.

Gong Y., Chen. Z., BiJing, L., Xiao, K., Zhang, X., Zhao, S., WuYanbin, Y., Shen, T.Y., 2021. Adsorption property and mechanism of polyacrylate-divinylbenzene microspheres for removal of trace organic micropollutants from water. Science of The Total Environmental 78: 146635.

Gregg, S.J., Sing, K. S. W. 1982. Adsorption Surface Area and Porosity, Academic Press, London, UK.

Imran, A., Gupta, V.K. 2006. Advances in water treatment by adsorption technology. Nature protocols, vol.1 no. 6: 2661-67.

Jüntgen, H. 1986. Activated carbon as catalyst support: a review of new research results. Fuel, vol 65, Issue 10: 1436-46.

Lam, S.S., Liew, R.K., Wong, Y.M., Azwar, E., Jusoh, A., Wahi, R. 2016. Activated Carbon for Catalyst Support from Microwave Pyrolysis of Orange Peel, Waste Biomass Valor.

Liou, T.H. 2010. Development of mesoporous structure and hig adsorption capacity of biomass-based activated carbon by phosphoric acid and ZnCl2 activation, Chem. Eng. Journal. 158: 129-142.

Lua, A.C., Yang, T. 2005. Characteristics of AC prepared from pistachio-nut shell by zinc chloride activation under nitrogen and vacuum conditions. J. Colloid Interface Sci. 290: 505-513.

Rodriguez-Mirasol, J., Cordero T., Rodriguez, J.J. 1993. Preparation and characterization of ACs from eucalyptus kraft lignin. Carbon 31: 87-95.

Taghizadeh, A., Rad-Moghadam, K. 2018. Green fabrication of Cu/pistachio shell nanocomposite using Pistacia Vera L. hull: An efficient catalyst for expedient reduction of 4-nitrophenol and organic dyes, Journal of Cleaner Production 198: 1105-19.

Vernersson, T., Bonelli, P.R., Cerrella, E.G., Cukierman, A.L., 2002. Arundo donax cane as a precursor for activated carbon preparation by phosphoric acid activation, Bioresour. Technol. 83: 95-104.

Villarroel Rocha, J., Barrera, D., Arroyo Gómez, J. J., Sapa, K. 2021. Insights of adsorption isotherms with diferent gases at 77 K and their use to assess the BET area of nanoporous silica materials, Adsorption.

Wu, F.C., Tseng, R.L., Juang, R.S. 2001. Adsorption of dyes and phenol from water on the ACs prepared from corncob wastes. Environ. Technol. 22: 205-213.

Wu, M-B., Li, L-Y., Liu, J., Li, Y., Ai, P-P., Wu, W-T., Zheng, J-T. 2015. Template-free preparation of mesoporous carbon from rice husks for use in supercapacitors, New Carbon Materials. 30(5): 471-475.

Zhang, L., Zhang, J., Kai-Chee, L. 2018. Activated carbon enhanced anaerobic digestion of food waste- Laboratory –scale and pilot-scale operation, waste management, 75: 270-79.

Yayınlanmış

2022-08-09

Nasıl Atıf Yapılır

DOLAS, H. (2022). The Effect Of Boron Compounds The Pore Formation And Surface Area Of Activated Carbon Obtained From Pistachio Shell. MAS Uygulamalı Bilimler Dergisi, 7(3), 657–669. https://doi.org/10.5281/zenodo.6798954

Sayı

Bölüm

Makaleler