Biological Nitrogen Fixation in Legumes: An Overview
Abstract views: 490 / PDF downloads: 203
DOI:
https://doi.org/10.5281/zenodo.7931974Keywords:
Symbiotic nitrogen fixation, biological N fixation, legumesAbstract
Nitrogen is an essential nutrient for plants and is often a limiting factor in crop growth. Large quantities of fertiliser are often applied to crops which is an energy-consuming, expensive and pollution producing procedure from production to application. Biological nitrogen fixation is a solution to reduce nitrogen-related problems in agriculture. Biological nitrogen fixation, the reduction of dinitrogen (N2) to ammonia, is an essential reaction in the global nitrogen cycle. Many legumes have evolved to establish a symbiosis with nitrogen-fixing soil-bacteria collectively known as Rhizobia. More than 98 species of symbiotic nitrogen-fixing rhizobia exist in 14 taxa in association with legumes.
References
Addo, P.W., Ossowski, P., MacPherson, S., Gravel, A.E., Kaur, R., Hoyos-Villegas, V., Lefsrud, M., 2022. Development of a nuclear magnetic resonance method and a near ınfrared calibration model for the rapid determination of lipid content in the field pea (Pisum sativum). Molecules, 27(5): 16-42.
Balboa, G.R., Sadras, V.O., Ciampitti, I.A., 2018. Shifts in soybean yield, nutrient uptake, and nutrient stoichiometry: A historical synthesis‐analysis. Crop Science, 58(1): 43-54.
Barker, D.W., Sawyer, J.E., 2005. Nitrogen application to soybean at early reproductive development. Agronomy journal, 97(2): 615-619.
Berrada, H., Fikri-Benbrahim, K., 2014. Taxonomy of the rhizobia: current perspectives. British Microbiology Research Journal, 4(6): 616.
Ciampitti, I.A., Salvagiotti, F. 2018. New insights into soybean biological nitrogen fixation. Agronomy Journal, 110(4): 1185-1196.
Day, D.A., Poole, P.S., Tyerman, S.D., Rosendahl, L. 2001. Ammonia and amino acid transport across symbiotic membranes in nitrogen-fixing legume nodules. Cellular and Molecular Life Sciences, 58: 61-71.
De Moraes Sa, J.C., Lal, R., Cerri, C.C., Lorenz, K., Hungria, M., de Faccio Carvalho, P.C., 2017. Low-carbon agriculture in South America to mitigate global climate change and advance food security. Environment international, 98: 102-112.
Dixon, R., Kahn, D., 2004. Genetic regulation of biological nitrogen fixation. Nature Reviews Microbiology, 2(8): 621-631.
Ferguson, B., Lin, M.H., Gresshoff, P.M., 2013. Regulation of legume nodulation by acidic growth conditions. Plant Signaling & Behavior, 8(3): e23426.
Fukami, J., Cerezini, P., Hungria, M., 2018. Azospirillum: benefits that go far beyond biological nitrogen fixation. Amb Express, 8(1): 73.
Gondalia, N., Vashi, R., Barot, V., Sharma, F., Anishkumar, P.K., Chatterjee, M., Sarkar, A., 2022. Genomic designing for abiotic stress tolerance in pea (Pisum sativum L.). In Genomic Designing for Abiotic Stress Resistant Pulse Crops, 45-113.
Gutiérrez-Boem, F.H., Scheiner, J.D., Rimski-Korsakov, H., Lavado, R.S., 2004. Late season nitrogen fertilization of soybeans: effects on leaf senescence, yield and environment. Nutrient Cycling in Agroecosystems, 68(2): 109-115.
Hungria, M., Franchini, J.C., Campo, R.J., Graham, P.H., 2005. The importance of nitrogen fixation to soybean cropping in South America. Nitrogen Fixation in Agriculture, Forestry, Ecology, and The Environment, 25-42.
Jacob, C., Carrasco, B., Schwember, A.R., 2016. Advances in breeding and biotechnology of legume crops. Plant Cell, Tissue and Organ Culture, 127: 561-584.
Javaid, A., Ghafoor, A., Rabbani, M.A., 2022. Analysis of genetic diversity among localaand exotic Pisum sativum Genotypes Through RAPD and SSR Markers. Pakistan Journal of Botany, 54(3): 903-909.
Jian, B., Hou, W., Wu, C., Liu, B., Liu, W., Song, S., Han, T., 2009. Agrobacterium rhizogenes-mediated transformation of Superroot-derived Lotus corniculatus plants: a valuable tool for functional genomics. BMC Plant Biology, 9(1): 1-14.
Kavadia, A., Omirou, M., Fasoula, D.A., Louka, F., Ehaliotis, C., Ioannides, I.M., 2021. Co-inoculations with rhizobia and arbuscular mycorrhizal fungi alters mycorrhizal composition and lead to synergistic growth effects in cowpea that are fungal combination-dependent. Applied Soil Ecology, 167: 104013.
Khatun, M., Sarkar, S., Era, F.M., Islam, A. M., Anwar, M.P., Fahad, S., Islam, A.A., 2021. Drought stress in grain legumes: Effects, tolerance mechanisms and management. Agronomy, 11(12): 2374.
Koester, R.P., Skoneczka, J.A., Cary, T.R., Diers, B.W., Ainsworth, E.A., 2014. Historical gains in soybean (Glycine max Merr.) seed yield are driven by linear increases in light interception, energy conversion, and partitioning efficiencies. Journal of Experimental Botany, 65(12): 3311-3321.
Kumari, V.V., Roy, A., Vijayan, R., Banerjee, P., Verma, V.C., Nalia, A., Hossain, A., 2021. Drought and heat stress in cool-season food legumes in sub-tropical regions: Consequences, adaptation, and mitigation strategies. Plants, 10(6): 1038.
Larrainzar, E., Wienkoop, S., Weckwerth, W., Ladrera, R., Arrese-Igor, C., González, E.M., 2007. Medicago truncatula root nodule proteome analysis reveals differential plant and bacteroid responses to drought stress. Plant Physiology, 144(3): 1495-1507.
McArthur, J.W., McCord, G.C. 2017. Fertilizing growth: Agricultural inputs and their effects in economic development. Journal of development economics, 127: 133-152.
Mendes, I.C., Hungria, M., Vargas, M.A.T. 2003. Soybean response to starter nitrogen and Bradyrhizobium inoculation on a Cerrado oxisol under no-tillage and conventional tillage systems. Revista Brasileira de Ciência do Solo, 27: 81-87.
Ohyama, T., Fujikake, H., Yashima, H., Tanabata, S., Ishikawa, S., Sato, T., Fujimaki, S. 2011. Effect of nitrate on nodulation and nitrogen fixation of soybean. Soybean Physiology and Biochemistry, 10: 333-364.
Oldroyd, G.E., Murray, J.D., Poole, P.S., Downie, J.A. 2011. The rules of engagement in the legume-rhizobial symbiosis. Annual Review of Genetics, 45: 119-144.
Omomowo, O.I., Babalola, O.O., 2021. Constraints and prospects of improving cowpea productivity to ensure food, nutritional security and environmental sustainability. Frontiers in Plant Science, 12.
Poole, P., Allaway, D. 2000. Carbon and nitrogen metabolism in Rhizobium. Advances in Microbial Physiology, 43: 117-163.
Prudent, M., Dequiedt, S., Sorin, C., Girodet, S., Nowak, V., Duc, G., Maron, P.A. 2020. The diversity of soil microbial communities matters when legumes face drought. Plant, Cell & Environment, 43(4): 1023-1035.
Rubio, L.M., Ludden, P.W. 2008. Biosynthesis of the iron-molybdenum cofactor of nitrogenase. Annual review of Microbiology, 62.
Salvagiotti, F., Cassman, K.G., Specht, J. E., Walters, D.T., Weiss, A., Dobermann, A. 2008. Nitrogen uptake, fixation and response to fertilizer N in soybeans: A review. Field Crops Research, 108(1): 1-13.
Sofi, P.A., Baba, Z.A., Hamid, B., Meena, R.S., 2018. Harnessing soil rhizobacteria for improving drought resilience in legumes. In Legumes for soil health and sustainable management, 235-275.
Soumare, A., Diedhiou, A.G., Thuita, M., Hafidi, M., Ouhdouch, Y., Gopalakrishnan, S., Kouisni, L. 2020. Exploiting biological nitrogen fixation: a route towards a sustainable agriculture. Plants, 9(8): 1011.
Thavarajah, D., Lawrence, T.J., Powers, S. E., Kay, J., Thavarajah, P., Shipe, E., Boyles, R. 2022. Organic dry pea (Pisum sativum L.) biofortification for better human health. PloS one, 17(1): e0261109.
Unkovich, M.J., Pate, J.S., 2000. An appraisal of recent field measurements of symbiotic N2 fixation by annual legumes. Field Crops Research, 65(2-3): 211-228.
Vidal, R.O., Nascimento, L.C.D., Maurício Costa Mondego, J., Amarante Guimarães Pereira, G., Falsarella Carazzolle, M., 2012. Identification of SNPs in RNA-seq data of two cultivars of Glycine max (soybean) differing in drought resistance. Genetics and Molecular Biology, 35: 331-334.
White, J., Prell, J., James, E.K., Poole, P. 2007. Nutrient sharing between symbionts. Plant Physiology, 144(2): 604-614.
Ye, H., Roorkiwal, M., Valliyodan, B., Zhou, L., Chen, P., Varshney, R.K., Nguyen, H.T., 2018. Genetic diversity of root system architecture in response to drought stress in grain legumes. Journal of Experimental Botany, 69(13): 3267-3277.
Zhang, F., Smith, D.L., 2002. Interorganismal signaling in suboptimum environments: the legume-rhizobia symbiosis. Advances in Agronomy. 76: 12
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 MAS Journal of Applied Sciences
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.