Maternal Acceptance of Pregnancy and Implantation Process in Sheep


Abstract views: 213 / PDF downloads: 167

Authors

  • Ali Ekber TEKDAL Dicle Üniversitesi Sağlık Bilimleri Enstitüsü, Diyarbakır,

DOI:

https://doi.org/10.5281/zenodo.7456363

Keywords:

Embryo, small ruminant, interferon, endometrium

Abstract

The embryonal period in sheep is the period from the end of blastogenesis to day 34. Sheep embryos, 3-4 days after fertilization enters the uterus. The zygote formed by the union of male and female pronuclei undergoes mitotic divisions. First, it becomes an embryo with two blastomeres. On the 14th day after mating, the filamentous conceptus is immobilized in the uterine lumen. The elongated blastocyst maintains close contact with the endometrial epithelium. In all mammals, the endometrial uterine glands secrete a complex fluid containing proteins called histotrophs and various nutrients. In this secretion product; enzymes, growth factors, cytokines, lymphokines, hormones, transport proteins etc. is found. In histotrophic nutrition, proteins and other nutrient molecules produced by the uterine glands ensure the survival of the embryo. The embryo floats in this histotrophic fluid. In non-pregnant sheep, 16-17 days of the cycle. The release of Prostaglandin (PGF2α)  from the endometrium increases and causes regression of the corpus luteum. Therefore, inhibition of the secretion of endometrial PGF2α is essential in the acceptance of pregnancy. In sheep, the free-floating blastocyst produces specific proteins in the uterus. This protein is called ovine trophoblastic protein-1 (oTP-1) and is known as interferon tau. Interferon tau produced in the trophectoderm of the blastocyst is explained as inhibiting the synthesis of oxytocin receptors by suppressing endometrial estradiol receptors and thus inhibiting the secretion of PGF2α. Interferon tau, 10-21 days of pregnancy in sheep. It is produced on the 15th day and reaches its maximum level on the 15th day. The circulating concentration of progesterone hormone ensures survival and development of the blastocyst during early pregnancy.



References

Afonso, S., Romagnano, L., Babiarz, B. 1997. The expression and function of cystatin C and cathepsin B and cathepsin L during mouse embryo implantation and placentation. Development 124: 3415–3425.

Aplin, J.D., Hey, N.A. 1995. MUC1, endometrium and embryo implantation. Biochemical Society Transactions, 23: 826–831.

Aplin, J.D., Meseguer, M., Simon, C., Ortiz, M.E., Croxatto, H., Jones, C.J. 2001. MUC1, glycans and the cell-surface barrier to embryo implantation. Biochem Soc Trans, 29: 153-156.

Asselin, E., Bazer, F.W., Fortier, M.A. 1997. Recombinant ovine and bovine interferons tau regulate prostaglandin production and oxytocin response in cultured bovine endometrial cells. Biol Reprod; 56: 402-408.

Bazer, F.W. 2012. Uterine biology in pigs and sheep. Journal of Anim Sci and Biotech. 3: 23.

Bazer, F.W., Johnson, G.A., Song, G., Wu, G. 2012a. Pregnancy recognition signaling, fetal-placental development and prenatal fetal programming. In: Astiz Blanco S, Bonzalez Buines A (Ed.). Animal Reproduction in Livestock. Oxford, UK: Eolss Publishers. (Encyclopedia of Life Support Systems – Eolss).

Bazer, F.W., Johnson, G.A., Spencer, TE. 2005. Growth and development: pre-implantation embryo. In: Pond WG, Bell AW (Ed.). Encyclopedia of Animal Science. New York, NY: Marcel Dekker, 1:1-3.

Bazer, F.W., Song, G., Kim, J., Erikson, D.W., Johnson, G.A., Burghardt, R.C., Gao, H., Satterfield, M.C., Spencer, T.E., Gao, W. 2012b.

Mechanistic mammalian target of rapamycin (MTOR) cell signaling: effects of select nutrients and secreted phosphoprotein 1 on development of mammalian conceptuses. Mol Cell Endocrinol, 354: 22-33.

Brayman, M., Thathiah, A., Carson, D.D. 2004. MUC1: A multifunctional cell surface component of reproductive tissue epithelia. Reprod. Biol. Endocrinol. 2, 4.

Buhi, W.C. 2002. Characterization and biological roles of oviduct-specific, oestrogen-dependent glycoprotein. Reproduction, 123:355-362.

Burghardt, R.C., Johnson, G.A., Jaeger, LA., Ka, H., Garlow, J.E., Spencer, T.E., Bazer, F.W. 2002. Integrins and extracellular matrix proteins at the maternal–fetal interface in domestic animals. Cells Tissues Organs 172: 202–217.

Carson, D.D., Bagchi, I., Dey, S.K., Enders, A.C., Fazleabas, A.T., Lessey, B.A., Yoshinaga, K. 2000. Embryo implantation. Dev. Biol. 223: 217–237.

Dubocovich, M.L., Markowska, M. 2005. Functional MT1 and MT2 melatonin receptors in mammals. Endocrine 27: 101–110.

Duranthon, V., Watson, A.J., Lonergan, P. 2008. Preimplantation Embryo Programming: Transcription, Epigenetics, and Culture Environment. Reproduction, 135: 141–150.

Ealy, A.D., Wagner, S.K., Sheils, A.E., Whitley, N.C., Kiesling, D.O., Johnson, S.E., Berbato, G.F. 2004. İdentification of interferon-T isoforms expressed by the peri- implantation goat (Capra hircus) conceptus. Dom Anim Endoc, 27: 39-49.

Ellington, J.E. 1991. The bovine oviduct and its role in reproduction: a review of the literature. Cornell Vet, 81: 313-328.

Fu, Y., He, C.J., Ji, P.Y., Zhuo, Z.Y., Tian, X.Z., Wang, F., Tan, D.X., Liu, G.S. 2014. Effects of melatonin on the proliferation and apoptosis of sheep granulosa cells under thermal stress. Int. J. Mol. Sci. 15: 21090–21104.

Ghersevich, S., Massa, E., Zumoffen, C. 2015. Oviductal secretion and gamete interaction. Reproduction, 149:r1-r14.

Giancotti, F.G., Ruoslahti, E. 1999. Integrin signaling. Science 285: 1028–1032.

Gray, C.A., Burghardt, R.C., Johnson, GA., Bazer, FW., Spencer, T.E. 2002. Evidence that absence of endometrial gland secretions in uterine gland knockout ewes compromises conceptus survival and elongation. Reproduction 124: 289–300.

Greg, A., Johnson, G.A., Bazer, F.W., Burghardt, R.C., Guoyao, W., Kramer, B.A. 2018. Cellular events during ovine implantation and impact for gestation. Anim. Reprod, 15(1): 843-855.

Guillomot, M., Flechon, J.E., Leroy, F. 1993. Blastocyst development and implantation. In Reproduction in Mammals and Man, pp 387–411. Eds. C Thibault, MC Levasseur & RHF Hunter. Paris: Ellipses.

Guillomot, M., Flechon, J.E., Wintenberger-Torres, S. 1981. Conceptus attachment in the ewe: an ultrastructural study. Placenta 2: 169–182.

Guillomot, M., Michel, C., Gaye, P., Charlier, N., Trojan, J., Martal, J. 1990. Cellular localization of an embryonic interferon, ovine trophoblastin and its mRNA in sheep embryos during early pregnancy. Biol. Cell. 68, 205–211.

He, C., Ma, T., Shi, J.M., Zhang, Z.Z., Wang, J., Zhu, K.F., Li, Y., Yang, M.H., Song, Y.K., Liu, G.S. 2016. Melatonin and its receptor MT1 are involved in the downstream reaction to luteinizing hormone and participate in the regulation of luteinization in different species. J. Pineal Res. 61: 279–290.

Hunter, R.H.F. 1998. Have the Falopian Tubes a Vital Role in Promoting Fertility? Acta Obs. Gynecol. Scand. 77: 475–486.

İgwebuike, U.M. 2009. A review of uterine structural modifications that influence conceptus implantation and development in sheep and goats. Anim Reprod Sci 112: 1-7.

Johnson, G.A., Bazer, F.W., Jaeger, L.A., Ka, H., Garlow, J.E., Pfarrer, C., Spencer, T.E., Burghardt, R.C. 2001. Muc-1, integrin, and osteopontin expression during the implantation cascade in sheep. Biol. Reprod. 65: 820–828.

Johnson, G.A., Burghardt, R.C., Bazer, F.W. 2014. Osteopontin: a leading candidate adhesion molecule for implantation in pigs and sheep. J Anim Sci Biotechnol, 5: 56-70.

Johnson, G.A., Burghardt, R.C., Bazer, F.W., Spencer, T.E. 2003. Osteopontin: roles in implantation and placentation. Biology of Reproduction, 69: 1458–1471.

Killian, G. 2004. Evidence for the role of oviduct secretions in sperm function, fertilization and embryo development. Anim Reprod Sci, 82/83:141-153.

Killian, G. 2011. Physiology and endocrinology symposium: evidence that oviduct secretions influence sperm function: a retrospective view for livestock. J Anim Sci, 89: 1315-1322.

Kim, J., Burghardt, R.C., Wu, G., Johnson, G.A., Spencer, T.E., Bazer, F.W. 2011a. Select Nutrients in the ovine uterine lumen: VII. Effects of arginine, leucine, glutamine and glucose on trophectodem cell signaling, proliferation and migration. Biol Reprod, 84: 70-78.

Kim, J., Burghardt, R.C., Wu, G., Johnson, G.A., Spencer, T.E., Bazer, F.W. 2011b. Select Nutrients in the ovine uterine lumen: VIII. Arginine stimulates proliferation of ovine trophectoderm cells through mTOR-RPS6K-RPS6 signaling cascade and synthesis of nitric oxide and polyamines. Biol Reprod, 84: 62-69.

Kim, J., Choi, S., Bazer, F.W., Spencer, TE. 2003. Identification of genes in the ovine endometrium regulated by interferon tau independent of signal transducer and activator of transcription one. Endocrinology, 144(12):5203–5214.

Kim, J., Erikson, D.W., Burghardt, R.C., Spencer, T.E., Wu, G., Bayless, K.J., Johnson, G.A., Bazer, F.W. 2010. Secreted phosphoprotein 1 binds integrins to initiate multiple cell signaling pathways, including FRAP1/mTOR, to support attachment and force-generated migration of trophectoderm cells. Matrix Biol, 29: 369-382.

Kimber, S.J., Illingworth, I.M., Glasser, SR. 1995. Expression of carbohydrate antigens in the rat uterus during early pregnancy and after ovariectomy and steroid replacement. J Reprod Fertil, 103: 75-87.

Leese, H.J., Tay, J.I., Reischl, J., Downing, SJ. 2001. Formation of Fallopian tubal fluid: role of a neglected epithelium. Reproduction, 121:339-346.

Lima, G.N., Maganhin, C.C., Simoes, R.S., Baracat, M.C.P., da Silva Sasso, G.R., Fuchs, L.F.P., de Jesus Simoes, M., Baracat, E.C., Junior, J.M.S. 2015. Steroidogenesis-related gene expression in the ratovary exposed to melatonin supplementation. Clinics 70: 144–151.

Maganhin, C.C., Simoes, R.S., Fuchs, L.F.P., Sasso, G.R.S., Simoes, M.J., Baracat, E.C., Soares, J.M. 2014. 2014. Melatonin influences on steroidogenic gene expression in the ovary of pinealectomized rats. Fertil. Steril. 102, 291–298.

Mann, G.E., Fray, M.D., Lamming, G.E. 2006. Effects of time of progesterone supplementation on embryo development and interferon-tau production in the cow. Vet. J. 171: 500–503.

Martin, P.M., Sutherland, A.E. 2001. Exogenous amino acids regulate trophectoderm differentiation in the mouse blastocyst through an mTOR-dependent pathway. Develop Biol 240:182-193.

Menezo, Y., Guerin, P. 1997. The mammalian oviduct: biochemistry and physiology. Eur J Obstet Gynecol Reprod Biol, 73: 99-104.

Mondejar, I., Martinez, I., Aviles, M., Coy, P. 2013. Identification of potential oviductal factors responsible for zona pellucida hardening and monospermy during fertilization in mammals. Biol Reprod, 89: 1-8.

Nielsen, F.C., Ostergaard, L., Nielsen, J., Christiansen, J. 1995. Growth-dependent translation of IGF-II mRNA by a rapamycin-sensitive pathway. Nature, 377: 358-362.

Perez-Cerezales, S., Ramos-Ibeas, P., Acuña, O.S., Avilés, M., Coy, P., Rizos, D., Gutiérrez-Adán, A. 2018. The Oviduct: From Sperm Selection to the Epigenetic Landscape of the embryoy. Biol. Reprod. 98: 262–276.

Platanias, L.C. 2005. Mechanisms of type-I- and type-II-interferon-mediated signalling. Nat Rev Immunol, 5(5): 375–386.

Salilew-Wondim, D., Saeed-Zidane, M., Hoelker, M., Gebremedhn, S., Poirier, M., Pandey, HO., Tholen, E., Neuho, C., Held, E., Besenfelder, U. 2018. Genome-Wide DNA Methylation Patterns of Bovine Blastocysts Derived from in Vivo Embryos Subjected to in Vitro Culture Before, During or After Embryonic Genome Activation. BMC Genom. 19: 1–19.

Sarıbay, M.K., Erdem, H. 2015. Gebelik ve tanı yöntemleri (Ed: Semacan, A Kaymaz, M Fındık, M Rişvanlı, A Köker, A), Çiftlik Hayvanlarında Doğum ve Jinekoloji, Medipres Yayınevi, Ankara, s. 507-511.

Satterfield, M.C., Bazer, F., Spencer, T.E. 2006. Progesterone regulation of pre-implantation conceptus growth and galectin 15 (LGALS15) in the ovine uterus. Biol. Reprod. 75: 289–296.

Satterfield, M.C., Hayashi, K., Song, G., Black, S.G., Bazer, F.W., Spencer, TE. 2008. Progesterone regulates FGF10, MET, IGFBP1, and IGFBP3 in the endometrium of the ovine uterus. Biol Reprod, 79(6):1226–1236.

Senger, P.L., Pullman, W.A. 1999. Pathways to Pregnancy and Parturition. 1^st Edition, Ephrata: The Mack Printing Group Science Press.

Song, G., Spencer, T.E., Bazer, F.W. 2005. Cathepsins in the ovine uterus: regulation by pregnancy, progesterone and interferon tau. Endocrinology 146: 4825–4833.

Song, G., Spencer, T.E., Bazer, F.W. 2006. Progesterone and interferon tau regulate cystatin C (CST3) in the endometrium. Endocrinology 147: 3478–3483.

Spencer, T.E., Bazer, F.W. 2004. Conceptus signals for establishment and maintenance of pregnancy. Reprod Biol Endocrinol, 2: 49.

Spencer, T.E., Bazer, F.W., Burghardt, R.C., Palmarini, M. 2007a. Pregnancy recognition and conceptus implantation in domestic ruminants: Roles of progesterone, interferons and endogenous retroviruses. Reproduction Fertility and Development.

Spencer, T.E., Gray, A., Johnson, G.A., Taylor, K.M., Gertler, A., Gootwine, E., Ott, T.L., Bazer, F.W. 1999. Effects of recombinant ovine interferon tau, placental lactogen, and growth hormone on the ovine uterus. Biology of Reproduction, 61: 1409–1418.

Spencer, T.E., Johnson, G.A., Bazer, F.W., Burghardt, R.C. 2007b. Fetal-maternal interactions during the establishment of pregnancy in ruminants. Soc Reprod Fertil Suppl 64: 379–396.

Sun, T., Lei, Z.M., Rao, C.V. 1997. A novel regulation of the oviductal glycoprotein gene expression by luteinizing hormone in bovine tubal epithelial cells. Mol Cell Endocrinol, 131: 97-108.

Tamura, H., Nakamura, Y., Korkmaz, A., Manchester, L.C., Tan, D.X., Sugino, N., Reiter, R.J. 2009. Melatonin and the ovary: physiological and pathophysiological implications. Fertil. Steril. 92: 328–343.

Tian, X., Wang, F., Zhang, L., He, C., Ji, P., Wang, J., Zhang, ZL., Abulizi, W., Wang, X., Lian, Z., Liu, G. 2017. Beneficial effects of melatonin on the in vitro maturation of sheep oocytes and its relation to melatonin receptors. Int. J. Mol. Sci. 18: 834–849.

Wooding, F.B., Burton, G.J. 2008. Synepitheliochorial placentation: ruminants (ewe and cow). In: Wooding FB, Burton GJ. Comparative Placentation: Structure, Function and Evolution. Heidelberg: Springer-Verlag, 133-144.

Wooding, F.B., Staples, L.D., Peacock, M.A. 1982. Structure of trophoblast papillae on the sheep conceptus at implantation. Journal of Anatomy, 134: 507–516.

Published

2022-12-23

How to Cite

TEKDAL, A. E. (2022). Maternal Acceptance of Pregnancy and Implantation Process in Sheep. MAS Journal of Applied Sciences, 7(Özel Sayı), 1171–1183. https://doi.org/10.5281/zenodo.7456363

Issue

Section

Articles