Determination of Some Physicochemical Properties of Camelina Biodiesel Blends with Different Alcohols


Abstract views: 191 / PDF downloads: 92

Authors

DOI:

https://doi.org/10.5281/zenodo.10613853

Keywords:

Camelina oil, biodiesel blends, alcohols, fuel properties

Abstract

As the world population increases, energy use, environmental pollution and energy prices are also increasing rapidly. Since energy resources are limited and not available everywhere, countries aim to increase alternative energy sources in order to produce their own energy. At the same time, in order to protect the environment from negative effects, research on biodiesel is diversified and the effects of its blends with different alcohols are examined. The Camelina plant seeds preferred in this study contain high levels of oil (42-45%), and the high erucic acid content of the oil (2.3-4.2%) makes the consumption of oil as human food unfavorable. In this case, it makes the use of oil in biofuel production more attractive in terms of sustainability of human food production. The properties of the fuels obtained by blending different alcohols (heptane, hexane, ethanol, butanol, n-pentanol, iso-pentanol) at 10% ratios into Camelina biodiesel (C100) obtained by the transesterification method were determined. It has been observed that the viscosity, density, calorific value and cold flow properties of the fuels obtained by blending alcohols with C100 biodiesel, which has fuel properties in accordance with TS EN 14214 standards, are improved in all blends. While the flash point of heptane, hexane, ethanol and butanol mixture fuels occurred at low temperatures, it was above 50oC in mixtures with high carbon n-pentanol and iso-pentanol. The high flash point is important for transportation and storage safety and highlights the usability of these fuels. When the fuel properties were examined, the best results among the alcohols blended with camelina biodiesel were obtained in the blend with n-pentanol.

 

References

Acaroğlu, M., Ünaldı, M., Aydoğan, H. 2010. Fuels and combustion, Nobel Yayınevi, Ankara.

Akdere, Y., 2006. Experimental investigation of the use of methyl ester of soybean oil as a fuel in diesel engines.

Budak, N., Bayındır, H., Yücel, H., 2009. Evaluation of the use of biodiesel in diesel engines in terms of performance and exhaust emissions. V. Renewable energy resources symposium, 123-130.

Campos-Fernández, J., Arnal, J. M., Gómez, J., and Dorado, M.P., 2012. A comparison of performance of higher alcohols/diesel fuel blends in a diesel engine. Applied energy 95: 267-275.

Erol, D., Yeşilyurt, M.K., Yaman, H., Doğan, B., 2023. Evaluation of the use of diesel-biodiesel-hexanol fuel blends in diesel engines with exergy analysis and sustainability index. Fuel 337: 126892.

Oğuz, H., Öğüt, H., Gökdoğan, O., 2012. Türkiye tarım havzaları üretim ve destekleme modelinin biyodizel sektörüne etkisinin incelenmesi. Journal of the Institute of Science and Technology 2: 77-84.

Kumar, B.R., Saravanan, S., 2016. Effects of iso-butanol/diesel and n-pentanol/diesel blends on performance and emissions of a DI diesel engine under premixed LTC (low temperature combustion) mode. Fuel 170: 49-59.

Oğuz, H., 2004. Tarım kesiminde yaygın olarak kullanılan dizel motorlarında fındık yağı biyodizelinin yakıt olarak kullanım imkanlarının incelenmesi. Doktora Tezi, Selçuk Üniversitesi, Fen Bilimleri Enstitüsü. Konya.

Orhan, K., Seyis, F., 2012. Alternatif yağ bitkisi: ketencik [Camelina sativa (L.) Crantz]. Anadolu Tarım Bilimleri Dergisi 23: 116-120.

Öğüt, H., Akınerdem, F., Pehlivan, E., Aydın, M.E., Oğuz, H. 2004. Türkiye’de bazı yağ bitkilerinden biyodizel üretim prosesleri ve dizel motorlarda kullanımının tarım, çevre, gıda, kimya ve teknolojik boyutlarıyla araştırılması :DPT Proje No:2004/7 Biyoenerji 2004 Sempozyumu, İzmir.

Öğüt, H., Eryılmaz, T., Oğuz, H., 2007. Bazı aspir (Carthamus tinctorius L.) çeşitlerinden üretilen biyodizelin yakıt özelliklerinin karşılaştırmalı olarak incelenmesi. 1. Ulusal Yağlı Tohumlu Bitkiler ve Biyodizel Sempozyumu, 28-31.

Öğüt, H., Oğuz, H., 2006. Biodiesel: the fuel of the third millennium, Nobel Publication Distribution.

Örgev, C., Gümüş, İ., 2017. Katı atıkların geri dönüşümü ve alternatif enerji algısı (Solid Waste Recycling And Alternative Energy Perception). In "UMTEB-I", pp. 147-169.

Öztürk, S., Çeykel, İ.T., 2023. Türkiye’nin Yenilenebilir Enerji Kaynakları Kullanımı Üzerine Bir Değerlendirme. Disiplinlerarasi, 99.

Rakopoulos, D., Rakopoulos, C., Giakoumis, E., Dimaratos, A., Founti, M., 2011. Comparative environmental behavior of bus engine operating on blends of diesel fuel with four straight vegetable oils of Greek origin: Sunflower, cottonseed, corn and olive. Fuel 90: 3439-3446.

Robinson, R.G., 1987. Camelina: A useful research crop and a potential oilseed crop. Minnesota Agr. Expt. Sta. Bul. 579 (AD-SB-3275).

Şahin, S., Mengeş, H.O., 2022. Determination of the Effects of Some Additives Added to the Mixture of Diesel and Safflower Biodiesel on Engine Performance. Türk Tarım ve Doğa Bilimleri Dergisi 9: 282-294.

Şimşek, T., Yiğit, E., 2017. BRICT ülkelerinde yenilenebilir enerji tüketimi, petrol fiyatları, CO2 emisyonu, kentleşme ve ekonomik büyüme üzerine nedensellik analizi. Eskişehir Osmangazi Üniversitesi İktisadi ve İdari Bilimler Dergisi 12: 117-136.

Toklu, E., 2017. Biomass energy potential and utilization in Turkey. Renewable Energy, 107: 235-244.

Xu, B., Lin, B., 2023. Assessing the green energy development in China and its carbon reduction effect: using a quantile approach. Energy Economics, 126: 106967.

Yilmaz, N., Atmanli, A., 2016. Examination of the use of alternative fuels in aviation. Sustainable Aviation Research Society 1: 3-10.

Downloads

Published

2024-03-12

How to Cite

ŞAHİN, S. (2024). Determination of Some Physicochemical Properties of Camelina Biodiesel Blends with Different Alcohols. MAS Journal of Applied Sciences, 9(1), 43–49. https://doi.org/10.5281/zenodo.10613853

Issue

Section

Articles