The Morphological Response of 127 Durum Wheat (Triticum turgidum ssp durum) Genotypes against Salt Stress at Germination Stage


Abstract views: 135 / PDF downloads: 80

Authors

DOI:

https://doi.org/10.5281/zenodo.8220359

Keywords:

Durum wheat, salinity, germination, coleoptile

Abstract

Salinity is one of the environmental problems and has adverse effects on plants. In this study, it was aimed to investigate the effects of different salt concentrations on 127 durum wheat (Triticum turgidum ssp durum) genotypes at the germination stage. For this purpose, wheat seeds were germinated in Petri dishes for12 days, and 0-50-100 and 200 mM NaCl solutions were applied. Increasing salinity caused reduction of germination, coleoptile length, shoot dry matter, and root length. The results showed increasing salinity concentrations inhibited durum wheat growth at germination stage. In the highest salt concentration C9, Akçakale-2000, and Vatan genotypes were found the most tolerant; and Zenit, Çeşit-1252, and Şölen-2002 weredetermined asthe most sensitive genotypes; so according to these results. C9, Akçakale-2000, and Vatan genotypes are the cultivars to be advised for salty soils.

References

Ahammed, G. J., Gantait, S., Mitra, M., Yang, Y., Li, X., 2020. Role of ethylene crosstalk in seed germination and early seedling development: A review. Plant Physiology and Biochemistry, 151:124-131.

Almansouri, M., Kinet, J. M., Lutts, S., 2001. Effect of salt and osmotic stresses on germination in durum wheat (Triticum durum Desf.). Plant and Soil, 231(2): 243-254.

Anonymous, 2023. Salt affected soils. Food and Agriculture Organization of the United Nations, (http://www.fao.org/soils-portal/soil-management/management-of-some-problem-soils/salt-affected-soils/more information-on-salt-affected-soils/en/. (Accessed: 20.01.2023).

Ay, H. , Mert, Z., Akan, K., 2011. Çukurova Bölgesinde Bazı Makarnalık Buğday Çeşitlerinin Sarı Pasa (Puccinia striiformis) Reaksiyonları. GAP VI. Tarım Kongresi, Conference Proceedings Book, 9-12 Mayıs, 9-12 Mayıs, Şanlıurfa, 67-72.

Ay, H., Mert, Z., Akan, K., 2011. Çukurova Bölgesinde Bazı Makarnalık Buğday Çeşitlerinin Kahverengi Pasa (Puccinia recondita) Reaksiyonları. GAP VI. Tarım Kongresi, Conference Proceedings Book, 9-12 Mayıs, Şanlıurfa, 62-66.

Ayed, S., Rassaa, N., Chamekh, Z., Beji, S., Karoui, F., Bouzaien, T., Mrabit, M., Ben, Y. M., 2014. Effect of salt stress (sodium chloride) on germination and seedling growth of durum wheat (Triticum durum Desf.) genotypes. International Journal of Biodiversity and Conservation, 6(4): 320-325.

Bouthour, D., Kalai, T., Chaffei, H. C., Goui, H., Corpas, J., 2015. Differential response of NADP-dehydrogenases and carbon metabolism in leaves and roots of two durum wheat (Triticum durum Desf.) cultivars (Karim and Azizi) with different sensitivities to salt stress. Journal of Plant Physiology, 179: p 56-63.

Bozkurt, M., 2012. Effect of different wheat varieties on pasta quality. Ms thesis, METU Graduate School of Natural and Applied Sciences, Ankara.

Carpici, E. B., Celik, N., Bayram, G., 2009. Effects of salt stress on germination of some maize (Zea mays L.) cultivars. African Journal of Biotechnology, 8(19):4918-4922.

Chen, N., Chen, W. J., Yan, H., Wang, Y., Kang, H. Y., Zhang, H. Q., Zhou, Y. H., Sun, G. L., Sha, L. N., Fan, X., 2020. Evolutionary patterns of plastome uncover diploid-polyploid maternal relationships in Triticeae. Molecular Phylogenetics and Evolution, 149: 106838.

Datta, J. K., Nag, S., Banerjee, A., Mondal, N. K., 2009. Impact of salt stress on five varieties of Wheat(Triticum aestivum L.) cultivars under laboratory condition. Journal of Applied Science Environment Manage, 13: p 93-97.

Fang, W., Di, D., Pei, D., Baoshan, W., 2010. Coleoptile elongation response of different salt-tolerant wheat cultivars to NaCl stress. Europe PMC Search life-sciences literaure, 2053-2058.

Feghhenabi, F., Hadi, H., Khodaverdiloo, H., Van Genuchten, M. T., 2020. Seed priming alleviated salinity stress during germination and emergence of wheat (Triticum aestivum L.). Agricultural Water Management, 231, 106022.

Fellahi, Z. E. A., Zaghdoudi, H., Bensaadi, H., Boutalbi, W., Hannachi, A., 2019. Assessment of salt stress effect on wheat (Triticum aestivum L.) cultivars at seedling stage. Agriculturae Conspectus Scientificus, 84(4): 347-355.

Gulles, A. A., Bartolome, V. I., Morantte, R. I. Z. A., Nora, L. A., Relente, C. E. N., Talay, D. T., Cañeda, A., Ye, G., 2014. Randomization and analysis of data using STAR [Statistical Tool for Agricultural Research]. Philippine Journal of Crop Science (Philippines).

Hasegawa, P. M., Bressan, R. A., Zhu, J. K., Bohnert, H. J., 2000. Plant cellular and molecular responses to high salinity. Annual review of plant biology, 51(1): 463-499.

Ibrahim, E. A., 2016. Seed priming to alleviate salinity stress in germinating seeds. Journal of Plant Physiology, 192: 38-46.

Jbir, N., Chaibi, W., Ammar, S., Jemmali, A., Ayadi, A., 2001. Root growth and lignification of two wheat species differing in their sensitivity to NaCl, in response to salt stress. Comptes Rendus de l'Académie des Sciences-Series III-Sciences de la Vie, 324(9): 863-868.

Kadkol, G. P., Sissons, M., 2016. Durum Wheat: Overview. (Ed. Wrigley, C., Corke, H., Seetharaman, K., Faubıon, J.) Encyclopedia of Food Grains. Elsevier Academic Press, Oxford. p.117-124.

Kamran, M., Shahbaz, M., Ashraf, M., Akram, N. A., 2009. Alleviation of drought-induced adverse effects in spring wheat (Triticum aestivum L.) using proline as a pre-sowing seed treatment. Pakistan Journal of Botany, 41(2):621-632.

Koyuncu, M., 2009. Screening of durum wheat landraces for selected traits associated with pasta quality. Ms thesis, Gaziosmanpaşa University, Institute of Science, Ankara.

Liu, J., Gai, L., Zong, H., 2021. Foliage application of chitosan alleviates the adverse effects of cadmium stress in wheat seedlings (Triticum aestivum L.). Plant Physiology and Biochemistry, 164:115-121.

Munns, R., Tester, M., 2008. Mechanisms of Salinity Tolerance. Annual Review of Plant Biology, 59: p 651-681.

Munns, R., Gilliham, M., 2015. Salinity tolerance of crops–what is the cost?. New phytologist, 208(3): 668-673.

Naz, R., Batool, S., Shahid, M., Keyani, R., Yasmin, H., Nosheen, A., Hassan, M. N., Mumtaz, S., Siddiqui, M. H., 2021. Exogenous silicon and hydrogen sulfide alleviates the simultaneously occurring drought stress and leaf rust infection in wheat. Plant Physiology and Biochemistry,166: 558-571.

Öner, F., Kirli, A., 2018. Effects of salt stress on germination and seedling growth of different bread wheat (Triticum aestivum L.) cultivars. Akademik Ziraat Dergisi, 7(2): 191-196.

Poudel, P. B., Poudel, M. R., Puri, R. R., 2021. Evaluation of heat stress tolerance in spring wheat (Triticum aestivum L.) genotypes using stress tolerance indices in western region of Nepal. Journal of Agriculture and Food Research, 5: 100179.

Radhakrishnan, R., Lee, I. J, 2015. Penicillium–sesame interactions: A remedy for mitigating high salinity stress effects on primary and defense metabolites in plants. Environmental and Experimental Botany, 116: 47-60.

Sairam, R. K., Rao, K. V., Srivastava, G. C., 2002. Differential response of wheat genotypes to long term salinity stress in relation oxidative stress, antioxidant activity and osmolyte concentration. Plant Science, 16: 1037–1046.

Saleh, M. A., Madany, M. M. Y., 2015. Coumarin pretreatment alleviates salinity stress in wheat seedlings. Plant Physiology and Biochemistry, 88: 27-35.

Satish, L., Rathinapriya, P., Rency, A. S., Ceasar, S. A., Prathibha, M., Pandian, S., Rameshkumar, R., Ramesh, M., 2016. Effect of salinity stress on finger millet (Eleusine coracana (L.) Gaertn): histochemical and morphological analysis of coleoptile and coleorhizae. Flora-morphology,

distribution. Functional Ecology of Plants, 222: 111-120.

Soni, S., Kumar, A., Sehrawat, N., Kumar, A., Kumar, N., Lata, C., Mann, A., 2021. Effect of saline irrigation on plant water traits, photosynthesis and ionic balance in durum wheat genotypes. Saudi Journal of Biological Sciences, 28(4): 2510-2517.

Soni, S., Kumar, A., Sehrawat, N., Kumar, N., Kaur, G., Kumar, A., Mann, A., 2021. Variability of durum wheat genotypes in terms of physio-biochemical traits against salinity stress. Cereal Research Communications, 49(1): 45-54.

Soriano, J. M., Villegas, D., Aranzana, M. H., Moral, L. F. G., Royo, C., 2016. Genetic structure of modern durum wheat cultivars and Mediterranean landraces matches with their agronomic performance. Plos One, p:1-19.

Talaat, N. B., Shawky, B. T., 2014. Protective effects of arbuscular mycorrhizal fungi on wheat (Triticum aestivum L.) plants exposed to salinity. Environmental and Experimental Botany, 20-31.

Tester, M., Davenport, R., 2003. Na+ tolerance and Na+ transport in higher plants. Annals of Botany, 91: 503–527.

Turan, Ö., 2012. Nohut çeşitlerinde düşük sıcaklığa dayanıklılığın fizyolojik, biyokimyasal ve moleküler düzeyde incelenmesi. Phd Thesis, Hacettepe University Institute of Science, Ankara.

USDA-ARS. 2008. Research Databases. Bibliography on Salt Tolerance. George E. Brown, Jr. Salinity Lab. US Dep. Agric., Agric. Res. Serv. Riverside, CA.

Yildirim, M., Kizilgeci, F., Akinci, C., Albayrak, O., 2015. Response of durum wheat seedlings to salinity. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 43(1): 108-112.

Zhang, X. Q., Lu, Z. Y., Cheng, Y. C., Guo, X. X., Tian, L., Zhang, J. Z., Xian, F., He, P. C., 2013. Effects of mixed salt stress on germination percentage and protection system of oat seedling. Advance Journal of Food Science and Technology, 592: 197-205.

Downloads

Published

2023-09-01

How to Cite

OTU BORLU, H., & ÇAKAN, H. (2023). The Morphological Response of 127 Durum Wheat (Triticum turgidum ssp durum) Genotypes against Salt Stress at Germination Stage. MAS Journal of Applied Sciences, 8(3), 591–605. https://doi.org/10.5281/zenodo.8220359

Issue

Section

Articles