Wearable Electronic Materials: Types, Properties and Applications

Abstract views: 23 / PDF downloads: 26





Wearable electronic materials, wearable devices, polymer, textile, washability


Wearable technology is currently at the cutting edge of both industry and academic research, and a number of wearable products are now on the market. Inorganic nanomembranes can be transferred to almost any substrate and can be shaped (they are elastic, printable, and flexible). Shapeable systems with a variety of capabilities have been developed via organic electronic materials frequently. These properties build the core concept for new technologies, which transform otherwise rigid high-speed devices into their shapeable counterparts. From the materials available, researchers can select the one that is most appropriate for the intended use. In certain cases, they may even decide to change the approach by selecting an appropriate material for a particular application.  All of the rigid electronics building pieces, including as active components, electronics and energy storage, must be remade in the form of multi-functional nanomembranes that can be reshaped on demand after production in order for this notion to be realised. Stretchable and flexible electronics have excellent mechanical properties that enable them to be bent, stretched, and twisted. This opens up a wide range of interesting applications in domains including biomedical engineering, robotics, human-machine interfaces, and other related ones. Although many different stretchable materials and structures have been constructed, the majority are only two-dimensional (2D) layouts for active components and interconnects.


Afsarimanesh, N., Nag, A., Sarkar, S., Sabet, G.S., Han, T., Mukhopadhyay, S.C., 2020. A review on fabrication, characterization and implementation of wearable strain sensors. Sensors & Actuators A: Physical, 315: 112355.

Aliabadi, A., Rounaghi, G. H., Zavar, M. H. A., 2017. A new droplet-based polymeric banana electrochemical biosensor for analysis of one microliter solution of paracetamol. Sensors & Actuators B: Chemical, 241: 182-189.

Allison, L., Hoxie, S.,Andrew, T. L., 2017. Towards seamlessly-integrated textile electronics: methods to coat fabrics and fibers with conducting polymers for electronic applications. Chemical Communications, 53(53): 7182-7193.

Andrew, T. L., Zhang, L., Cheng, N., Baima, M., Kim, J. J., Allison, L., Hoxie, S., 2018. Melding vapor-phase organic chemistry and textile manufacturing to produce wearable electronics. Accounts of Chemical Research, 51(4): 850-859.

Baca, A. J., Ahn, J. H., Sun, Y., Meitl, M. A., Menard, E., Kim, H. S., Rogers, J. A., 2008. Semiconductor wires and ribbons for high‐performance flexible electronics. Angewandte Chemie International Edition, 47(30): 5524-5542.

Bai, Y., Chen, B., Xiang, F., Zhou, J., Wang, H., Suo, Z., 2014. Transparent hydrogel with enhanced water retention capacity by introducing highly hydratable salt. Applied Physics Letters, 105(15): 151903.

Beyrich-Graf, X., Seltensperger, G., 2018. Quality Aspects in Production of Electronic Grade Chemicals in Multipurpose Plants. Chimia, 72(3): 130-130.

Brozena, A. H., Oldham, C. J., Parsons, G. N., 2016. Atomic layer deposition on polymer fibers and fabrics for multifunctional and electronic textiles. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 34(1): 010801.

Byrne, M. T., Gun'ko, Y. K., 2010. Recent advances in research on carbon nanotube–polymer composites. Advanced Materials, 22(15): 1672-1688.

Cheng, N., Zhang, L.,Kim, J.J.,Andrew, T.L., 2017. Vapor phase organic chemistry to deposit conjugated polymer films on arbitrary substrates. Journal of Materials Chemistry C, 5(23): 5787-5796.

Chikwetu, L., Miao, Y., Woldetensae, M. K., Bell, D., Goldenholz, D. M., Dunn, J., 2023. Does deidentification of data from wearable devices give us a false sense of security? A systematic review. The Lancet Digital Health.

Cotton, D.P.,Graz, I.M.,Lacour, S.P., 2009. A multifunctional capacitive sensor for stretchable electronic skins. IEEE Sensors Journal, 9(12): 2008-2009.

El-Sharif, H.F., Aizawa, H., Reddy, S.M., 2015. Spectroscopic and quartz crystal microbalance (QCM) characterisation of protein-based MIPs. Sensors and Actuators B: Chemical, 206: 239-245.

Fan, J. A., Yeo, W. H., Su, Y., Hattori, Y., Lee, W., Jung, S. Y., Rogers, J. A., 2014. Fractal design concepts for stretchable electronics. Nature Communications, 5(1): 3266.

Guo, Y., Bae, J., Zhao, F., Yu, G., 2019. Functional hydrogels for next-generation batteries and supercapacitors. Trends in Chemistry, 1(3): 335-348.

Harman, D. G., Gorkin III, R., Stevens, L., Thompson, B., Wagner, K., Weng, B., Wallace, G. G., 2015. Poly (3, 4-ethylenedioxythiophene): dextran sulfate (PEDOT: DS) – a highly processable conductive organic biopolymer. Acta Biomaterialia, 14: 33-42.

Heeger, A.J., 2010. Semiconducting polymers: the third generation. Chemical Society Reviews, 39(7): 2354-2371.

Heikenfeld, J., Jajack, A., Rogers, J., Gutruf, P., Tian, L., Pan, T., Wang, J., 2018. Wearable sensors: modalities, challenges, and prospects. Lab on a Chip, 18(2): 217-248.

Huang, G. W., Xiao, H. M.,Fu, S. Y., 2015. Wearable electronics of silver-nanowire/poly (dimethylsiloxane) nanocomposite for smart clothing. Scientific Reports, 5(1): 13971.

Ikawa, M., Yamada, T., Matsui, H., Minemawari, H., Tsutsumi, J. Y., Horii, Y., Hasegawa, T., 2012. Simple push coating of polymer thin-film transistors. Nature Communications, 3(1): 1176.

Ilievski, F., Mazzeo, A.D., Shepherd, R. F., Chen, X.,Whitesides, G. M., 2011. Soft robotics for chemists. Angewandte Chemie, 123(8): 1930-1935.

Jensen, J., Dyer, A. L., Shen, D. E., Krebs, F. C., Reynolds, J. R., 2013. Direct photopatterning of electrochromic polymers. Advanced Functional Materials, 23(30): 3728-3737.

Jian, M., Zhang, Y., Liu, Z., 2020. Natural biopolymers for flexible sensing and energy devices. Chinese Journal of Polymer Science, 38: 459-490.

Kaur, B., Kumar, S., Kaushik, B. K., 2023. Novel Wearable Optical Sensors for Vital Health Monitoring Systems—A Review. Biosensors, 13(2): 181.

Kim, T.,Park, C.,Samuel, E.P.,An, S.,Aldalbahi, A.,Alotaibi, F., ....,Yoon, S.S., 2021. Supersonically sprayed washable, wearable, stretchable, hydrophobic, and antibacterial rGO/AgNW fabric for multifunctional sensors and supercapacitors. ACS Applied Materials and Interfaces, 13(8): 10013-10025.

Lacroce, E., Rossi, F., 2022. Polymer-based thermoresponsive hydrogels for controlled drug delivery. Expert Opinion on Drug Delivery, 19(10): 1203-1215.

Le Floch, P., Yao, X., Liu, Q., Wang, Z., Nian, G., Sun, Y., Suo, Z., 2017. Wearable and washable conductors for active textiles. ACS Applied Materials and Interfaces, 9(30): 25542-25552.

Leber, D.E., Meek, B.N., Leija, S.D., Wilson, D.G., Chaney, R.L., Hackler, D. R., 2016. Electromechanical reliability testing of flexible hybrid electronics incorporating FleX silicon-on-polymer ICs. In 2016 IEEE Workshop on Microelectronics and Electron Devices (WMED) (pp. 1-4). IEEE.

Lee, C., Ko, Y. J., Lee, S. Y., 2016. A pyrocatechol violet-titanium alkoxide complex for HF sensing: Study on the complex structure and application. Dyes and Pigments, 127: 133-141.

Lee, H., Ohsawa, I., Takahashi, J., 2015. Effect of plasma surface treatment of recycled carbon fiber on carbon fiber-reinforced plastics (CFRP) interfacial properties. Applied Surface Science, 328: 241-246.

Lee, K. M., Kim, H. J., Jung, D., Oh, Y., Lee, H., Han, C., Kim, H., 2018. Rapid accessible fabrication and engineering of bilayered hydrogels: Revisiting the cross-linking effect on superabsorbent poly (acrylic acid). ACS Omega, 3(3): 3096-3103.

Lee, K. M.,Kim, K.H.,Yoon, H.,Kim, H., 2018. Chemical design of functional polymer structures for biosensors: From nanoscale to macroscale. Polymers, 10(5): 551.

Lee, K.M.,Oh, Y.,Chang, J.Y.,Kim, H., 2018. Facile fluorescent labeling of a polyacrylamide-based hydrogel film via radical initiation enables selective and reversible detection of Al 3+. Journal of Materials Chemistry B, 6(8): 1244-1250.

Lei, Z., Wang, Q., Sun, S., Zhu, W., Wu, P., 2017. A bioinspired mineral hydrogel as a self‐healable, mechanically adaptable ionic skin for highly sensitive pressure sensing. Advanced Materials, 29(22): 1700321.

Liao, M., Wan, P., Wen, J., Gong, M., Wu, X., Wang, Y., Zhang, L., 2017. Wearable, healable, and adhesive epidermal sensors assembled from mussel‐inspired conductive hybrid hydrogel framework. Advanced Functional Materials, 27(48): 1703852.

Lifson, M. A., Carter, J. A.,Miller, B. L., 2015. Functionalized polymer microgel particles enable customizable production of label-free sensor arrays. Analytical Chemistry, 87(15): 7887-7893.

Liu, D., Ding, Z., Wu, Y., Liu, S. F., Han, Y., Zhao, K., 2021. In situ study of molecular aggregation in conjugated polymer/elastomer blends toward stretchable electronics. Macromolecules, 55(1): 297-308.

Liu, P., Mai, C., Zhang, K., 2017a. Formation of uniform multi-stimuli-responsive and multiblock hydrogels from dialdehyde cellulose. ACS Sustainable Chemistry and Engineering, 5(6): 5313-5319.

Liu, X., Gao, Z., Cheng, J., Gong, J., Wang, J., 2022. Research progress on preparation and purification of fluorine-containing chemicals in lithium-ion batteries. Chinese Journal of Chemical Engineering, 41: 73-84.

Liu, Y.J., Cao, W.T., Ma, M.G., Wan, P., 2017b. Ultrasensitive wearable soft strain sensors of conductive, self-healing, and elastic hydrogels with synergistic “soft and hard” hybrid networks. ACS Applied Materials and Interfaces, 9(30): 25559-25570.

Mandal, D., Mandal, S. K., Ghosh, M., Das, P. K., 2015. Phenylboronic Acid Appended Pyrene‐Based Low‐Molecular‐Weight Injectable Hydrogel: Glucose‐Stimulated Insulin Release. Chemistry–A European Journal, 21(34): 12042-12052.

Mi, H. Y., Jing, X., Wang, Y., Shi, X., Li, H., Liu, C., Gong, S., 2020. Poly [(Butyl acrylate)-co-(butyl methacrylate)] as Transparent Tribopositive Material for High-Performance Hydrogel-Based Triboelectric Nanogenerators. ACS Applied Polymer Materials, 2(11): 5219-5227.

Moaseri, E., Karimi, M., Maghrebi, M., Baniadam, M., 2014. Fabrication of multi-walled carbon nanotube–carbon fiber hybrid material via electrophoretic deposition followed by pyrolysis process. Composites Part A: Applied Science and Manufacturing, 60: 8-14.

Naya, F., Molina-Aldareguia, J. M., Lopes, C. S., González, C., LLorca, A. J., 2017. Interface characterization in fiber-reinforced polymer–matrix composites. Jom, 69: 13-21.

O'Connor, T.F., Zaretski, A.V., Shiravi, B.A., Savagatrup, S., Printz, A.D., Diaz, M.I., Lipomi, D. J., 2014. Stretching and conformal bonding of organic solar cells to hemispherical surfaces. Energy and Environmental Science, 7(1): 370-378.

Pan, L., Chortos, A., Yu, G., Wang, Y., Isaacson, S., Allen, R., Bao, Z., 2014. An ultra-sensitive resistive pressure sensor based on hollow-sphere microstructure induced elasticity in conducting polymer film. Nature Communications, 5(1): 3002.

Park, S.J., Park, C.S., Yoon, H., 2017. Chemo-electrical gas sensors based on conducting polymer hybrids. Polymers, 9(5): 155.

Paul, R., Dai, L., 2018. Interfacial aspects of carbon composites. Composite Interfaces, 25(5-7): 539-605.

Ponomarenko, S. A., Tatarinova, E. A., Muzafarov, A. M., Kirchmeyer, S., Brassat, L., Mourran, A., de Leeuw, D., 2006. Star-shaped oligothiophenes for solution-processible organic electronics: flexible aliphatic spacers approach. Chemistry of Materials, 18(17): 4101-4108.

Promphet, N., Ummartyotin, S., Ngeontae, W., Puthongkham, P., Rodthongkum, N., 2021. Non-invasive wearable chemical sensors in real-life applications. Analytica Chimica Acta, 1179: 338643.

Qian, X., Wang, X., Ouyang, Q., Chen, Y.,Yan, Q., 2012. Effect of ammonium-salt solutions on the surface properties of carbon fibers in electrochemical anodic oxidation. Applied Surface Science, 259: 238-244.

Rong, H., Dahmen, K.H., Garmestani, H., Yu, M., Jacob, K.I., 2013. Comparison of chemical vapor deposition and chemical grafting for improving the mechanical properties of carbon fiber/epoxy composites with multi-wall carbon nanotubes. Journal of Materials Science, 48: 4834-4842.

Savagatrup, S., Printz, A. D., O’Connor, T. F., Zaretski, A. V., Lipomi, D.J., 2014. Molecularly stretchable electronics. Chemistry of Materials, 26(10): 3028-3041.

Seo, S., Lee, J., Kwon, M. S., Seo, D.,Kim, J., 2015. Stimuli-responsive matrix-assisted colorimetric water indicator of polydiacetylene nanofibers. ACS Applied Materials and Interfaces, 7(36): 20342-20348.

Seyedin, S., Razal, J.M., Innis, P.C., Jeiranikhameneh, A., Beirne, S.,Wallace, G.G., 2015. Knitted strain sensor textiles of highly conductive all-polymeric fibers. ACS Applied Materials and Interfaces, 7(38): 21150-21158.

Shaibani, P. M., Etayash, H., Naicker, S., Kaur, K., Thundat, T., 2017. Metabolic study of cancer cells using a pH sensitive hydrogel nanofiber light addressable potentiometric sensor. ACS Sensors, 2(1): 151-156.

Sinha, A., Kalambate, P.K., Mugo, S.M., Kamau, P., Chen, J., Jain, R., 2019. Polymer hydrogel interfaces in electrochemical sensing strategies: A review. TrAC Trends in Analytical Chemistry, 118: 488-501.

Song, J., Tan, Y., Chu, Z., Xiao, M., Li, G., Jiang, Z., Hu, T., 2018. Hierarchical reduced graphene oxide ridges for stretchable, wearable, and washable strain sensors. ACS Applied Materials and Interfaces, 11(1): 1283-1293.

Song, J. E., Cho, E.C., 2016. Dual-responsive and multi-functional plasmonic hydrogel valves and biomimetic architectures formed with hydrogel and gold nanocolloids. Scientific Reports, 6(1): 1-10.

Spurgeon, J.M., Boettcher, S.W., Kelzenberg, M.D., Brunschwig, B.S., Atwater, H.A., Lewis, N.S., 2010. Flexible, polymer‐supported, Si wire array photoelectrodes. Advanced Materials, 22(30): 3277-3281.

Sun, X., Agate, S., Salem, K. S., Lucia, L.,Pal, L., 2020. Hydrogel-based sensor networks: Compositions, properties, and applications—A review. ACS Applied Bio Materials, 4(1): 140-162.

Tadesse, M.G., Lübben, J. F., 2023. Review on Hydrogel-Based Flexible Supercapacitors for Wearable Applications. Gels, 9(2): 106.

Tao, X., Koncar, V., Huang, T.H., Shen, C.L., Ko, Y.C., Jou, G.T., 2017. How to make reliable, washable, and wearable textronic devices. Sensors, 17(4): 673.

Tee, B. C., Wang, C., Allen, R., Bao, Z., 2012. An electrically and mechanically self-healing composite with pressure-and flexion-sensitive properties for electronic skin applications. Nature Nanotechnology, 7(12): 825-832.

Tsolis, A., Bakogianni, S., Angelaki, C., Alexandridis, A. A., 2023. A Review of Clothing Components in the Development of Wearable Textile Antennas: Design and Experimental Procedure. Sensors, 23(6): 3289.

Visweswaran, B., Mandlik, P., Mohan, S. H., Silvernail, J. A., Ma, R., Sturm, J. C.,Wagner, S., 2015. Diffusion of water into permeation barrier layers. Journal of Vacuum Science and Technology A: Vacuum, Surfaces, and Films, 33(3): 031513.

Wang, Y., Li, X., Fan, S., Feng, X., Cao, K., Ge, Q., Lu, Y., 2021. Three-dimensional stretchable microelectronics by projection microstereolithography (PμSL). ACS Applied Materials and Interfaces, 13(7): 8901-8908.

Wu, H., Kustra, S., Gates, E. M., Bettinger, C.J., 2013. Topographic substrates as strain relief features in stretchable organic thin film transistors. Organic Electronics, 14(6): 1636-1642.

Xu, F., Dong, S., Liu, G., Pan, C., Guo, Z. H., Guo, W., Wang, Z.L., 2021. Scalable fabrication of stretchable and washable textile triboelectric nanogenerators as constant power sources for wearable electronics. Nano Energy, 88: 106247.

Xu, Y., Xu, H., Jiang, X., Yin, J., 2014. Versatile Functionalization of the Micropatterned Hydrogel of Hyperbranched Poly (Ether Amine) Based on “Thiol‐Yne” Chemistry. Advanced Functional Materials, 24(12): 1679-1686.

Ye, D., Cheng, Q., Zhang, Q., Wang, Y., Chang, C., Li, L., Zhang, L., 2017. Deformation drives alignment of nanofibers in framework for inducing anisotropic cellulose hydrogels with high toughness. ACS Applied Materials and Interfaces, 9(49): 43154-43162.

Yeung, K., Kim, H., Mohapatra, H., Phillips, S.T., 2015. Surface-accessible detection units in self-immolative polymers enable translation of selective molecular detection events into amplified responses in macroscopic, solid-state plastics. Journal of the American Chemical Society, 137(16): 5324-5327.

Yu, B., Jiang, Z., Tang, X. Z., Yue, C. Y., Yang, J., 2014. Enhanced interphase between epoxy matrix and carbon fiber with carbon nanotube-modified silane coating. Composites Science and Technology, 99: 131-140.

Yu, F., Cao, X., Li, Y., Zeng, L., Zhu, J., Wang, G., Chen, X., 2014. Diels–Alder crosslinked HA/PEG hydrogels with high elasticity and fatigue resistance for cell encapsulation and articular cartilage tissue repair. Polymer Chemistry, 5(17): 5116-5123.

Yu, X., Zhang, W., Zhang, P.,Su, Z., 2017. Fabrication technologies and sensing applications of graphene-based composite films: advances and challenges. Biosensors and Bioelectronics, 89: 72-84.

Yuan, M., Liu, A., Zhao, M., Dong, W., Zhao, T., Wang, J., Tang, W., 2014. Bimetallic PdCu nanoparticle decorated three-dimensional graphene hydrogel for non-enzymatic amperometric glucose sensor. Sensors and Actuators B: Chemical, 190: 707-714.

Yuk, H., Zhang, T., Parada, G. A., Liu, X., Zhao, X., 2016. Skin-inspired hydrogel–elastomer hybrids with robust interfaces and functional microstructures. Nature Communications, 7(1): 12028.

Zhang, Q. M., Berg, D., Duan, J., Mugo, S. M.,Serpe, M.J., 2016. Optical devices constructed from ferrocene-modified microgels for H2O2 sensing. ACS Applied Materials and Interfaces, 8(40): 27264-27269.

Zhao, B., Zhao, C., Li, R., Hamidinejad, S. M.,Park, C.B., 2017. Flexible, ultrathin, and high-efficiency electromagnetic shielding properties of poly (vinylidene fluoride) / carbon composite films. ACS Applied Materials and Interfaces, 9(24): 20873-20884.

Zhao, F., Huang, Y., 2011. Uniform modification of carbon fibers in high density fabric by γ-ray irradiation grafting. Materials Letters, 65(23-24): 3351-3353.

Zhou, H. W., Mishnaevsky Jr, L., Yi, H. Y., Liu, Y. Q., Hu, X., Warrier, A., Dai, G. M., 2016. Carbon fiber/carbon nanotube reinforced hierarchical composites: Effect of CNT distribution on shearing strength. Composites Part B: Engineering, 88: 201-211.

Zhou, G., Lin, X., Liu, J., Yu, J., Wu, J., Law, H. M., Ciucci, F., 2021. In situ formation of poly (butyl acrylate)-based non-flammable elastic quasi-solid electrolyte for dendrite-free flexible lithium metal batteries with long cycle life for wearable devices. Energy Storage Materials, 34: 629-639.

Zhou, X., Zhu, L.,Fan, L., Deng, H.,Fu, Q., 2018. Fabrication of highly stretchable, washable, wearable, water-repellent strain sensors with multi-stimuli sensing ability. ACS Applied Materials and Interfaces, 10(37): 31655-31663.

Zhu, B., Li, X., Zhou, L., Su, B., 2022. An overview of wearable and implantable electrochemical glucose sensors. Electroanalysis, 34(2): 237-245.




How to Cite

KOÇYİĞİT, N. (2023). Wearable Electronic Materials: Types, Properties and Applications. MAS Journal of Applied Sciences, 8(3), 471–491. https://doi.org/10.5281/zenodo.8177145