Synergistic Effect of Triphenyl Phosphate on Non-Flammability of Polymer Materials


Abstract views: 247 / PDF downloads: 159

Authors

DOI:

https://doi.org/10.5281/zenodo.7338809

Keywords:

Triphenyl phosphate, flame retardant, synergistic effect, polymer material, non-flammability

Abstract

The aim of this study is to give information about the synergistic effect of triphenylphosphate (TPP), one of the important phosphorus flame retardants, on the non-flammability properties of polymer materials (polymer nanocomposites and polymer foams). For this, TPP is added to the polymer matrix such as polyurethane (PU), polyethylene (PE), polystyrene (PS), polycarbonate (PC) and acrylonitrile-butadiene-styrene (ABS) in different percentages and produced by extrusion, polymerization and injection methods. The results of UL-94, limiting oxygen index (LOI) and cone calorimetry analysis performed to determine the flammability property of polymer materials were compared with pure polymer and the synergistic effect of TPP on the flammability properties of polymer materials was discussed.

References

Akdoğan, E.,Erdem, M., Ureyen, M.E.,Kaya, M. 2020. Rigid polyurethane foams with halogen-free flame retardants: Thermal insulation, mechanical, and flame retardant properties. Journal of Applied Polymer Science, 137(1): 47611.

Bayel, D.K. 2018. Alev geciktirici mineral dolgu maddeleri. Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 7(3):1175-1179.

Beach, M.W., Rondan, N.G., Froese, R.D., Gerhart, B.B., Green, J.G., Stobby, B.G., Shmakov, A.G., Shvartsberg, V.M., Korobeinichev, O.P. 2008. Studies of degradation enhancement of polystyrene by flame retardant additives. Polymer Degradation and Stability, 93(9): 1664-1673.

Brunelle, D.J. 2006. Polycarbonates. 4.baskı. Encyclopedia of Polymer Science and Technology.

Dasari, A., Yu, Z.-Z.Cai, G.-P., Mai, Y.-W. 2013. Recent developments in the fire retardancy of polymeric materials. Progress in Polymer Science, 38:1357-1387.

Despinasse, M.-C.,Schartel, B. 2013. Aryl phosphate–aryl phosphate synergy in flame-retarded bisphenol A polycarbonate/acrylonitrile-buta diene-styrene. Thermochimica Acta,563:51-61.

Feyz, E.,Y., Esfandeh, M. 2010. Comparison of the effect of an organoclay, triphenyl phosphate, and a mixture of both on the degradation and combustion behaviour of PC/ABS blends. Macromoleculer Symposia, 298(1):130-137.

Gonchikzhapov, M.B., Paletskya, A.A., Kuibida, L.V., Shundrinac, I. K., Korobeinichev, O.P. 2012. Reducing the flammability of ultra-high-molecular-weight polyethylene by triphenyl phosphate additives combustion. Explosion, and Shock Waves, 48(5):579-589.

Green, J. 1992. A review of phosphorus-containing flameretardants. Fire Science,10:470-487.

Hazer, S., Coban, M., Aytac, A. 2019. Effects of ammonium polyphosphate and triphenyl phosphate on the flame retardancy, thermal, and mechanical properties of glass fiber-reinforced PLA/PC composites. Fireand Materials, 43:277-282.

Hoang, C.N., Pham, C.T., Dang, T.M., Hoang, D.Q., Lee, P.-C.,Kang, S.-J.,Kim, J. 2019. Novel oligo-ester-ether-diol prepared by waste poly (ethylene terephthalate) glycolysis and its use in preparing thermally stable and flame retardant polyurethane foam. Polymer,11:236.

Hoang, D.Q., Kim, J. 2013. Flame retardation performances of novel aryl cyclic phosphorus flame retardants when applied to highly flammable polymers. Macromolecular Research, 21(2): 184-193.

Hou, S., Li, Z., Zhang, Y.J., Jiang, P. 2021. PC/ABS karışımları için alev geciktirici, mekanik güçlendirme ve hidrolitik direnç üzerinde fosfor-fosfor sinerjik etkisi. Polimer Bozunması ve Kararlılığı,183:109442.

Khattar, N., Sharma, P., Berar, U., Diwan, P.K. 2022. Study of thermal decomposition parameters of UHMWPE sheet. Materialstoday: Proceeding, 62(10). 6091-6094.

Kim, J., Lee, K., Lee, K., Bae, J., Yang, J., Hong, S. 2003. Studies on the thermal stabilization enhancement of ABS; synergistic effect of triphenyl phosphate nanocomposite, epoxy resin, and silane coupling agent mixtures. Polymer Degradation and Stability,79(2): 201-207.

Korobeinichev, O.P., Gonchikzhapov, M.B., Paletsky, A.A., Tereshchenko, A.G., Shundrina, I.K., Kuibida, L.V., Shmakov, A.G., Hu, Y. 2016. Counterflow flames of ultrahigh-molecular-weight polyethylene with and without triphenylphosphate. Combustion and Flame, 169: 261-271.

Korobeinichev, O.P, Gonchikzhapov, M.B., Paletsky, A.A., Tereshchenko, A.G., Shmakov, A.G., Gerasimov, I.E., Knyazkov, D.A. 2017. Structure of counterflow flame of ultrahigh-molecular-weight polyethylene with and without triphenylphosphate. Proceedings of the Combustion Institute, 36(2): 3279-3286.

Laoutid, L., Bonnaud, L., Alexandre, M., Lopez-Cuesta, J.-M.,Dubois, P. 2009. New prospects in flame retardant polymermaterials: from fundamentals to nanocomposites. Material Science Enginering Research, 63:100-125.

Lee, K., Kim, J., Bae, J., Yang, J., Hong, S., Kim, H.-K. 2002. Studies on the thermal stabilization enhancement of ABS; synergistic effect by triphenyl phosphate and epoxy resin mixtures. Polymer”,43(8): 2249-2253.

Levchik, S.V., Weil, E.D. 2004. Thermal decomposition, combustion and fire-retardancy of polyurethanes-A review of the recent literatüre. Polymer International, 53(11):1585-1610.

Li, J., Liu, Y., Wang, Q. 2013. Flame-retarded high density polyethylene with an intumescent flame retardant synthesized in a phosphorus-containing solvent. Polymer-Plastic Technology and Engineering, 52(1):38-44.

Pawlowski, K.H., Scharte, B. 2007. Flame retardancy mechanisms of triphenyl phosphate, resorcinol bis(diphenyl phosphate) and bisphenol A bis(diphenyl phosphate) in polycarbonate/ acrylonitrile-butadiene-styrene blends. Polym International, 56:1404-1414.

Niroumand, J.S., Peighambardoust, S. J., Shenavar, A. 2014. Preparation of phosphorous flame retardant polystyrene nanocomposites with flammability and thermal stability properties”,11th International Seminar on Polymer Science and Technology, Tehran, 6-9 October, Iran.

Nguyen, T.N., Trinh, H.T., Sam, L.H., Nguyen, T.Q., Le, G.T. 2020. Halogen-free flame-retardant flexible polyurethane for textile coating: Preparation and characterisation. Fire and Materials, 44(2):269-282.

Pogorelčnik, B., Pulko, I., Wilhelm, T., Žigon, M. 2020. Influence of phosphorous-based flame retardants on the mechanical and thermal, properties of recycled PC/ABS copolymer blends. Journal of Applied Polymer Science, 137(7): 48377.

Polli, H., Pontes, L.A.M., Araujo, A. S., Barros, J.M.F., Jr, V.J.F. 2009. Degradation behavior and kinetic study of ABS polymer. Journal of Thermal Analysis and Calorimetry, 95(1): 131-134.

Thirumal, M., Singha, N.K., Khastgir, D., Manjunath, B.S., Naik, Y.P. 2010. Halogen-free flame-retardant rigid polyurethane foams: Effect of alumina trihydrate and triphenylphosphate on the properties of polyurethane foams. Journal of Applied Polymer Science, 116(4):2260-2268.

Yıldırım, S., Çelik, E. 2014. Alev geciktirici huntit ve hidromanyezit nanopartikül takviyeli polimerik kompozit kaplamalar. Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi, 14, OZ5762: 387-393.

Zhang,Y., Zheng, X., Wei, L., Sun, R., Guo, H., Liu, X., Liu, S., Li, Y., Mai, B. 2018. The distribution and accumulation of phosphate flame retardants (PFRs) in water environment. Science of the Total Environment, 630:164-170.

Zhang, C., Yang, R., Li, X., Yi, D. 2016. Preparation of polystyrene /triphenyl phosphate composites by suspension polymerization and melt extrusion method:A comparative study chinese. Journal of Polymer Science, 34( 6): 688-696.

Zhang, C., Li, X., Yang, R.,Lan, Y. 2016. Effects of triphenyl phosphate on styrene suspension polymerization process and flame retardance properties of polystyrene/triphenyl phosphate nanocomposite. Colloid Polymer Science, 294:1153-1163.

Zheng, X., Wang, G., Xu, W. 2014. Roles of organically-modified montmorillonite and phosphorous flame retardant during the combustion of rigid polyurethane foam. Polymer Degradation and Stability,101:32-39.

Zhou, K.Q., Jiang, S.H., Shi, Y.Q., Liu, J.J., Wang, B., Hu, Y., Gui, Z. 2014. Multigram-scale fabrication of organic modified MoS2 nanosheets dispersed in polystyrene with improved thermal stability, fire resistance, and smoke suppression properties. RSC Advances, 4:40170.

Wang,G., Li,W., Bai,S.,Wang, Q. 2019. Synergistic effects of flame retardants on the flammability and foamability of PS foams prepared by supercritical carbon dioxide foaming. ACS Omega, 4:9306-9315

Wei, P.,Tian, G.,Yu, H.,Qian, Y. 2013. Yeni bir organik-inorganik hibrit mezogözenekli silika sentezi ve PC/ABS'de alev geciktirici uygulaması. Polimer Bozunması ve Kararlılığı, 98(5):1022-1029.

Published

2022-11-20

How to Cite

KOÇYİĞİT, N. (2022). Synergistic Effect of Triphenyl Phosphate on Non-Flammability of Polymer Materials. MAS Journal of Applied Sciences, 7(4), 975–989. https://doi.org/10.5281/zenodo.7338809

Issue

Section

Articles