Lentil (Lens culinaris Medik.): A Current Review

Abstract views: 27 / PDF downloads: 30





Lentil, Lens culinaris, breeding, agronomy, food


Lentil was first cultivated 8000–10,000 years ago and is a protein-rich crop. It is an important dietary component in many Mediterranean and Asian countries but allergic reactions to lentil intake was reported in some countries. Lentil yield is a key and difficult trait to enhance for crop genetic improvement. Several biotic and abiotic variables such as drought, high temperature, salinity, mineral deficiency and fungal diseases limit the production of lentils. Landraces and wild relatives are more tolerant to adverse environmental conditions. Molecular tools to assist breeding efforts in lentil are less well developed in comparison with other crops. Due to its excellent and balanced nutritional composition, the use of lentil flour in bakery, extruded and other products is gaining attention from food technologists and industry. In this review, some valuable information related to lentil is extracted from international articles published in last two years and presented here.


Alonso‐Miravalles, L., Barone, G., Waldron, D., Bez, J., Joehnke, M.S., Petersen, I.L., O'Mahony, J.A. 2021. Formulation, pilot‐scale preparation, physicochemical characterization and digestibility of a lentil protein‐based model infant formula powder. Journal of the Science of Food and Agriculture.

Alrosan, M., Tan, T.C., Easa, A.M., Gammoh, S., Alu'datt, M. H. 2022. Recent updates on lentil and quinoa protein-based dairy protein alternatives: Nutrition, technologies, and challenges. Food Chemistry, 132386.

Alrosan, M., Tan, T.C., Easa, A.M., Gammoh, S., Kubow, S., Alu'datt, M.H. 2021. Mechanisms of molecular and structural interactions between lentil and quinoa proteins in aqueous solutions induced by pH recycling. International Journal of Food Science & Technology.

Biju, S., Fuentes, S., Gupta, D. 2021. Silicon modulates nitro‐oxidative homeostasis along with the antioxidant metabolism to promote drought stress tolerance in lentil plants. Physiologia Plantarum, 172(2): 1382-1398.

Boeck, T., Zannini, E., Sahin, A.W., Bez, J., Arendt, E.K. 2021. Nutritional and rheological features of lentil protein isolate for yoghurt-like application. Foods, 10(8): 1692.

Campanella, V., Miceli, C. 2021. Biological control of Fusarium wilt of Ustica landrace lentil. Crop Protection, 145: 105635.

El Haddad, N., Choukri, H., Ghanem, M.E., Smouni, A., Mentag, R., Rajendran, K., Kumar, S. 2021. High-Temperature and Drought Stress Effects on Growth, Yield and Nutritional Quality with Transpiration Response to Vapor Pressure Deficit in Lentil. Plants, 11(1): 95.

Galgano, F., Tolve, R., Scarpa, T., Caruso, M.C., Lucini, L., Senizza, B., Condelli, N. 2021. Extraction Kinetics of Total Polyphenols, Flavonoids, and Condensed Tannins of Lentil Seed Coat: Comparison of Solvent and Extraction Methods. Foods, 10(8): 1810.

Gela, T.S., Koh, C.S., Caron, C.T., Chen, L. A., Vandenberg, A., Bett, K.E. 2021. QTL mapping of lentil anthracnose (Colletotrichum lentis) resistance from Lens ervoides accession IG 72815 in an interspecific RIL population. Euphytica, 217(4): 1-11.

Grewal, S.K., Gill, R.K., Virk, H.K., Bhardwaj, R.D. 2022. Methylglyoxal detoxification pathway-Explored first time for imazethapyr tolerance in lentil (Lens culinaris L.). Plant Physiology and Biochemistry, 177: 10-22.

Halima, O., Najar, F.Z., Wahab, A., Gamagedara, S., Chowdhury, A.I., Foster, S.B., Ahsan, N. 2022. Lentil allergens identification and quantification: an update from omics perspective. Food Chemistry: Molecular Sciences, 100109.

Henares, B.M., Debler, J.W., Farfan‐Caceres, L.M., Grime, C.R., Syme, R.A., Blake, S.N., Lee, R. C. 2022. The novel avirulence effector AlAvr1 from Ascochyta lentis mediates host cultivar specificity of ascochyta blight in lentil. Molecular Plant Pathology.

Hosseini, S.Z., Ismaili, A., Nazarian-Firouzabadi, F., Fallahi, H., Nejad, A.R., Sohrabi, S.S. 2021. Dissecting the molecular responses of lentil to individual and combined drought and heat stresses by comparative transcriptomic analysis. Genomics, 113(2): 693-705.

Joehnke, M.S., Jeske, S., Ispiryan, L., Zannini, E., Arendt, E.K., Bez, J., Petersen, I.L. 2021. Nutritional and anti-nutritional properties of lentil (Lens culinaris) protein isolates prepared by pilot-scale processing. Food Chemistry: X, 9: 100112.

Johnson, N., Boatwright, J.L., Bridges, W., Thavarajah, P., Kumar, S., Shipe, E., Thavarajah, D. 2021. Genome-wide association mapping of lentil (Lens culinaris Medikus) prebiotic carbohydrates toward improved human health and crop stress tolerance. Scientific Reports, 11(1): 1-12.

Kulkarni, V., Sawbridge, T., Kaur, S., Hayden, M., Slater, A.T., Norton, S. L. 2021. New sources of lentil germplasm for aluminium toxicity tolerance identified by high throughput hydroponic screening. Physiology and Molecular Biology of Plants, 27(3): 563-576.

Kumar, J., Gupta, D.S., Kesari, R., Verma, R., Murugesan, S., Basu, P.S., Singh, N. P. 2021. Comprehensive RNAseq analysis for identification of genes expressed under heat stress in lentil. Physiologia Plantarum, 173(4): 1785-1807.

Lake, L., Sadras, V.O. 2021. Lentil yield and crop growth rate are coupled under stress but uncoupled under favourable conditions. European Journal of Agronomy, 126: 126266.

Lake, L., Chauhan, Y.S., Ojeda, J.J., Cossani, C.M., Thomas, D., Hayman, P.T., Sadras, V.O. 2021. Modelling phenology to probe for trade-offs between frost and heat risk in lentil and faba bean. European Journal of Agronomy, 122: 126154.

Lake, L., Izzat, N., Kong, T., Sadras, V.O. 2021. High‐throughput phenotyping of plant growth rate to screen for waterlogging tolerance in lentil. Journal of Agronomy and Crop Science, 207(6): 995-1005.

Lake, L., Kutchartt, D.G., Calderini, D.F., Sadras, V.O. 2021. Critical developmental period for grain yield and grain protein concentration in lentil. Field Crops Research, 270: 108203.

Lee, H. W., Lu, Y., Zhang, Y., Fu, C., Huang, D. 2021. Physicochemical and functional properties of red lentil protein isolates from three origins at different pH. Food Chemistry, 358: 129749.

Liber, M., Duarte, I., Maia, A.T., Oliveira, H.R. 2021. The history of lentil (Lens culinaris subsp. culinaris) domestication and spread as revealed by genotyping-by-sequencing of wild and landrace accessions. Frontiers in Plant Science, 355.

Marchini, M., Carini, E., Cataldi, N., Boukid, F., Blandino, M., Ganino, T., Pellegrini, N. 2021. The use of red lentil flour in bakery products: How do particle size and substitution level affect rheological properties of wheat bread dough?. LWT, 136: 110299.

Ogutcen, E., Ramsay, L., Von Wettberg, E. B., Bett, K.E. 2018. Capturing variation in Lens (Fabaceae): Development and utility of an exome capture array for lentil. Applications in plant sciences, 6(7): e01165.

Polidoros, A.N., Avdikos, I.D., Gleridou, A., Kostoula, S.D., Koura, E., Sakellariou, M.A., Vlachostergios, D. (2022). Lentil Gene Pool for Breeding. In Cash Crops (pp. 407-475). Springer, Cham.

Romano, A., Gallo, V., Ferranti, P., Masi, P. 2021. Lentil flour: Nutritional and technological properties, in vitro digestibility and perspectives for use in the food industry. Current Opinion in Food Science, 40: 157-167.

Sehgal, A., Sita, K., Rehman, A., Farooq, M., Kumar, S., Yadav, R., Siddique, K. H. (2021). Lentil. In Crop Physiology Case Histories for Major Crops (pp. 408-428). Academic Press.

Sellami, M.H., Pulvento, C., Lavini, A. 2021. Selection of Suitable Genotypes of Lentil (Lens culinaris Medik.) under Rainfed Conditions in South Italy Using Multi-Trait Stability Index (MTSI). Agronomy, 11(9): 1807.

Singh, C.K., Singh, D., Sharma, S., Chandra, S., Taunk, J., Konjengbam, N.S., Pal, M. 2021. Morpho-physiological characterization coupled with expressional accord of exclusion mechanism in wild and cultivated lentil under aluminum stress. Protoplasma, 258(5): 1029-1045.

Venugopalan, V. K., Nath, R., Sengupta, K., Nalia, A., Banerjee, S., Chandran, M.A.S., Hossain, A. 2021. The response of lentil (Lens culinaris Medik.) to soil moisture and heat stress under different dates of sowing and foliar application of micronutrients. Frontiers in Plant Science, 12.

Wang, W., Li, Q., Wu, J., Hu, Y., Wu, G., Yu, C., Wang, Y. 2021. Lentil lectin derived from Lens culinaris exhibit broad antiviral activities against SARS-CoV-2 variants. Emerging microbes & infections, 10(1): 1519-1529.

Wright, D.M., Neupane, S., Heidecker, T., Haile, T.A., Chan, C., Coyne, C. J., Bett, K.E. 2021. Understanding photothermal interactions will help expand production range and increase genetic diversity of lentil (Lens culinaris Medik.). Plants, People, Planet, 3(2): 171-181.

Yasir, T.A., Khan, A., Skalicky, M., Wasaya, A., Rehmani, M.I.A., Sarwar, N., El Sabagh, A. 2021. Exogenous sodium nitroprusside mitigates salt stress in lentil (Lens culinaris medik.) by affecting the growth, yield, and biochemical properties. Molecules, 26(9): 2576.

Zuchowski, J., Rolnik, A., Adach, W., Stochmal, A., & Olas, B. (2021). Modulation of oxidative stress and hemostasis by flavonoids from lentil aerial parts. Molecules, 26(2): 497.




How to Cite

MART, D. (2022). Lentil (Lens culinaris Medik.): A Current Review. MAS Journal of Applied Sciences, 7(2), 364–371. https://doi.org/10.52520/masjaps.v7i2id189