Wide Range Variation of δ³⁴S Isotopes in the Çayırhan Oil Shales: Multiple Sulfur Sources and Environmental Influences


DOI:
https://doi.org/10.5281/zenodo.15757478Keywords:
Framboidal pyrite, δ³⁴S isotope, sulfur fractionation, oxygen fugacity (ƒO₂), pHAbstract
Geochemical and mineralogical analyses of the Miocene-aged Çayırhan Oil Shales (ÇOS) reveal a significant presence of sulfur, particularly abundant framboidal pyrite. The formation of framboidal pyrite typically occurs in reducing, sulfur-rich, and microbially active environments, indicating such conditions prevailed during deposition. Sulfur isotope analyses (δ³⁴S) of 25 samples show a wide range of values, from –6.37‰ to +26.55‰, with an average of +13.86‰. This broad range suggests the involvement of multiple sulfur sources, including marine sulfate, freshwater sulfate (potentially through plant uptake), and hydrothermal sulfur. Low δ³⁴S values point to microbial sulfate reduction and freshwater influence, while high values may reflect closed-system conditions or rapid sedimentation. Since framboidal pyrite generally forms via microbial sulfate reduction and subsequent FeS₂ precipitation, its presence in ÇOS strongly supports a biogenic origin. The wide δ³⁴S variation further indicates that environmental factors such as pH and oxygen fugacity (ƒO₂) influenced pyrite formation. According to the literature, positive δ³⁴S values are often linked to slight pH drops, while negative values are associated with higher ƒO₂ levels. In summary, framboidal pyrite formation in the Çayırhan Basin was controlled by a complex interplay of diverse sulfur sources and varying environmental conditions. The isotopic variability reflects both open and closed system behavior in a lacustrine setting, influenced by microbial activity, diagenesis, redox conditions, sedimentation rates, and pH changes.
References
Anderson, T.F., Brumsack, H.J., Walter, L.M., Böttcher, M.E., 1987. Sulfur isotopic composition of pyrite: A tool for understanding ore formation. Geochimica et Cosmochimica Acta, 51(10): 2483–2488.
Bazylinski D.A., Frankel, R.B., Heywood, B.R., Mann, S., King, J.W., Donaghay, P. L., Hanson, A.K., 1995. Controlled biomineralization of magnetite (Fe₃O₄) and pyrite (FeS₂) by magnetotactic bacteria. Reviews in Mineralogy and Geochemistry: 30: 485–510.
Beveridge, T.J., Ferris, F.G., Fyfe, W.S., 1983. Metal ion binding by bacterial surfaces: Implications for the formation of metal ions in sediments. Chemical Geology: 40: 255–266.
Canfield, D.E., Raiswell, R., Westrich, J.T., Reaves, C.M., Berner, R.A., 1998. The use of sulfur isotope fractionation to identify the role of bacterial sulfate reduction in the formation of sedimentary sulfides. Geochimica et Cosmochimica Acta, 52(3): 599–618.
Claypool, G.E., Holser, W.T., Kaplan, I.R., Sakai, H., Zak, I., 1980. The age curves of sulfur and oxygen isotopes in marine sulfate and their mutual interpretation. Chemical Geology, 28(3–4):199–260.
Emery, D., Robinson, A.G., 1993. Inorganic Geochemistry: Application to Petroleum Geology. Blackwell, Oxford, 254.
Espitalié, J., Deroo, G., Marquis, F., 1985. Rock-Eval pyrolysis and its applications. Revue de l’Institut Français du Pétrole, 40(5): 563–579.
Faure, G., Mensing, T.M. 2005. Isotopes: Principles and applications, Hoboken, NJ: John Wiley and Sons.,3rd ed.: 327–345.
Ferris, F.G., Fyfe, W.S., Beveridge, T.J., 1989. Bacteria as nucleation sites for authigenic minerals in a metal-contaminated lake sediment. Chemical Geology, 74(3-4): 149–159.
Fisher, Q.J., Hudson, J.D., 1987. Pyrite formation in Jurassic shales: The role of organic matter and iron. Sedimentology, 34(6): 923–934.
Garcia-Guinea, J., Martinez-Frías, J., Martinez, R., 1997. Framboidal pyrite and other iron sulfide microtextures in old books. Journal of Materials Science Letters, 16: 1744–1746.
Goldhaber, M.B., Kaplan, I.R., 1974. The sulfur cycle. In E. D. Goldberg (Ed.), The Sea, Marine Chemistry, Wiley, Interscience, (5): 569–655.
Graham, C.M., Robertson, J.D., 1995. Kinetics and mechanisms of pyrite formation: Constraints from laboratory and field observations. Chemical Geology, 124(1–2): 1–20.
Graham, R.C., Ohmoto, H., 1994. Framboidal pyrite formation and sulfur isotope fractionation. Geochimica et Cosmochimica Acta, 58(1): 13–23.
Heywood, B.R., Mann, S., Frankel, R.B., 1990. Magnetic properties of bacterial magnetite: Implications for magnetic recording. Proceedings of the Royal Society of London. Series B: Biological Sciences, 239(1296): 107–113.
Hoefs, J., 1996. Stable Isotope Geochemistry (4th ed.) Springer: 201.
Jarvie, D.M., 1991. Total organic carbon (TOC) analysis. In D. W. Waples and J. W. Whelan (Eds.), Petroleum geochemistry and basin evaluation, AAPG:113–118.
Jørgensen, B. B., 1979. A theoretical model of the stable sulfur isotope distribution in marine sediments. Geochimica et Cosmochimica Acta, 43(3): 363–374.
Kaplan, I.R., Rittenberg, S.C., Wall, J.D., 1963. Carbon isotope fractionation during bacterial sulfate reduction. Journal of General Microbiology, 31(3): 417–425.
Koch, R., 1985. Bacterial pyrite formation: A mechanism for early energy conservation. Origins of Life and Evolution of the Biosphere, 15(3): 245–259.
Kohn, M.J., Riciputi, L.R., Stakes D., Orange D.L., 1998. Sulfur isotope variability in biogenic pyrite: Reflections of heterogeneous bacterial colonization? American Mineralogist, 83: 1454–1468.
Konhauser, K.O., 1997. Bacterial iron biomineralisation in nature. FEMS Microbiology Reviews, 20(3-4): 315–326.
Krouse, H.R., McCready, R.G.L., 1979. Sulphur isotope fractionation in sulfide minerals. In P. J. Hood (Ed.), Geophysics and geochemistry in the search for metallic ores, Geological Survey of Canada: 139–174.
Krumbein, W.E., 1983. Geomicrobiological processes: Sulfur isotope evidence. Microbial Geochemistry, 1:81–97.
Love, L.G., Amstutz, G.C., 1966. The occurrence of framboidal pyrite in sediments. Economic Geology, 61(3): 457–472.
Lowenstam, H.A., 1981. Minerals formed by organisms. Science, 211(4487): 1126–1131.
Mann, S., Sparks, N.H.C., Frankel, R.B., Bazylinski, D.A., Jannasch, H.W., 1990. Biomineralization of ferrimagnetic greigite (Fe3S4) and iron pyrite (FeS2) in a magnetotactic bacterium. Nature, 343(6255): 258–261.
Nielsen, H., 1979. Sulfur isotopes. In J. Zemann and B. Wedepohl (Eds.), Handbook of Geochemistry, Springer, 2: 1–19.
Ohmoto, H., 1986. Stable isotope geochemistry of ore deposits. Reviews Mineral, 16: 491–559.
Ohmoto, H., Goldhaber, M.B., 1997. Sulfur and carbon isotopes. In H. L. Barnes (Ed.), Geochemistry of Hydrothermal Ore Deposits, Wiley.3rd ed.: 517–611.
Ohmoto, H., Rye, R.O., 1979a. Isotopes of sulfur and carbon. In H. L. Barnes (Ed.), Geochemistry of Hydrothermal Ore Deposits, Wiley-Intersci, New York, 2nd ed.: 509–567.
Ohmoto, H., Rye, R.O., 1979b. Sulfur isotope geochemistry of ore deposits. Economic Geology, 74(5): 1407–1424.
Papunen, H., 1966. Pyrite textures and sulfur isotopes in black shales. Bulletin of the Geological Society of Finland, 38: 75–91.
Peters, K.E., Cassa, M.R., 1994. Applied source rock geochemistry. In L. B. Magoon and W. G. Dow (Eds.), The petroleum system–From source to trap. AAPG, 60: 93–120.
Popa, R., Kinkle, B.K., Badescu, A., 2004. Pyrite Framboids as Biomarkers for Iron-Sulfur Systems. Geomicrobiology Journal, 21(3): 193–206.
Postgate, J.R., 1963. Versatile medium for the enumeration of sulfate‐re‐ducing bacteria. Applied Microbiology, 11: 265–267.
Rickard, D., 1969a. Framboidal pyrite formation. Economic Geology, 64(4): 576–585.
Rickard, D., 1969b. The chemistry of iron sulphide formation at low temperatures. Stockholm Contributions in Geology, 20: 49–66.
Rickard, D., 1970. The origin of framboids. Lithos, 3(3): 269–293.
Schneiderhöhn, H., 1923. Über die Entstehung des Pyrits. Chemie der Erde, 1: 101–135.
Schoonen, M.A.A., Barnes, H.L., 1991. Reactions forming pyrite and marcasite from solution: II. Via FeS precursors below 100 °C. Geochimica et Cosmochimica Acta, 55(6): 1505–1514.
Subías, I., Yusta, I., Velasco, F., 1997. Sulphur isotope geochemistry of the Tharsis massive sulfide deposit, Iberian Pyrite Belt, Spain. Mineralium Deposita, 32: 165-173.
Thode, H.G., Kleerekoper, H., McElcheran, D., 1960. Isotope fractionation in sulfur compounds. Geochimica et Cosmochimica Acta, 20(1): 1–12.
Tissot, B.P. and Welte, D.H., 1984. Petroleum Formation and Occurrence. 2nd Edition, Springer-Verlag, Berlin: 699.
Ünal Çakır, E., 2020. Sulphur and lead isotope geochemistry of the Dursunbey (Balikesir) lead-zinc deposit. Journal of African Earth Science: 172.
Ünal Çakır, E., Gökce, A., Harris, C., 2023. Genesis of Tertiary Akçakışla vein-type Pb-Zn-Cu mineralisation (Central Anatolia, Turkey): Evidence from fluid inclusion and O, H, S, Pb-isotope compositions. Journal of African Earth Sciences: 205.
Wächtershäuser, G., 1990. Evolution of the first metabolic cycles. Proceedings of the National Academy of Sciences, 87(1): 200–204.
Wehner, H., 1989. Evaluation of source rock potential and maturity using Rock-Eval pyrolysis data. Oil and Gas Journal, 87(45): 63–66.
Wilkin, R.T., Barnes, H.L., 1996. Pyrite formation by reactions of iron monosulfides with dissolved inorganic and organic sulfur species. Geochimica et Cosmochimica Acta, 60(21): 4167–4179.
Wilkin, R.T., Barnes, H.L., 1997. Formation processes of framboidal pyrite. Geochimica et Cosmochimica Acta, 61(2): 323–339.
Yavuz Pehlivanlı, B., 2011. Hırka Formasyonu (Beypazarı, Ankara, Türkiye) Bitümlü şeyllerinin İnorganik element depolanmaları ve organik-inorganik elementler arasındaki kökensel ilişkiler. Doktora Tezi, Ankara Üniversitesi, Fen Bilimleri Enstitüsü, Ankara
Zhao, X., Jin, Q., Bethke, C.M., 2003. The influence of pH and redox conditions on sulfur isotope fractionation in microbial sulfate reduction. Geochimica et Cosmochimica Acta, 67(22): 4391–4403.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 The copyright of the published article belongs to its author.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.