Synthesis and Characterization of a Novel PMPAEMA-Br Macroinitiator


DOI:
https://doi.org/10.5281/zenodo.15721818Keywords:
Methacrylate, 2-(4-methoxyphenylamino)-2-oxoethyl methacrylate, macroinitiatorAbstract
In this study, novel polymethacrylate derivate (PMPAEMA-Br macroinitiator) was synthesized by free radical polymerization reaction of 11-Bromoundec-1-ene and 2-(4-methoxyphenylamino)-2-oxoethyl methacrylate (MPAEMA). The chemical characterization of PMPAEMA-Br macroinitiator were determinated by using spectoscopic methods such as proton magnetic resonance spectroscopy (1H-NMR), carbon-13 magnetic resonance spectroscopy (13C-NMR) and fourier transform infrared specroscopy (FTIR). The molecular weight and molecular weight distribution were determined by gel permeation chromatography (GPC). The synthesized novel PMPAEMA-Br will be applicable as macroinitiator in atom transfer radical polymerization (ATRP). The novel synthesized PMPAEMA-Br is considered to find potential application studies in ATRP polymerization as to be a suitable initiator.
References
Açıkbaş, Y., Çankaya, N., Çapan, R., Erdoğan, M., Soykan, C., 2016. Swelling behavior of the 2-(4-methoxyphenylamino)-2-oxoethyl methacrylate monomer LB thin film exposed to various organic vapors by quartz crystal microbalance technique. Journal of Macromolecular Science, Part A, 53(1): 18-25.
Arshady, R., 1992. Functional monomers. Journal of Macromolecular Science, Part C: Polymer Reviews, 32(1): 101-132.
Braunecker, W.A., Matyjaszewski, K., 2007. Controlled/living radical polymerization: Features, developments, and perspectives. Progress in Polymer Science, 32(1): 93-146.
Chen, M., Zhong, M., Johnson, J.A., 2016. Light-controlled radical polymerization: mechanisms, methods, and applications. Chemical Reviews, 116(17): 10167-10211.
Coessens, V., Pintauer, T., Matyjaszewski, K., 2001. Functional polymers by atom transfer radical polymerization. Progress in Polymer Science, 26(3): 337-377.
Gandini, A., M. Lacerda, T., 2021. Monomers and macromolecular materials from renewable resources: state of the art and perspectives. Molecules, 27(1): 159.
Gentekos, D.T., Sifri, R.J., Fors, B.P., 2019. Controlling polymer properties through the shape of the molecular-weight distribution. Nature Reviews Materials, 4(12): 761-774.
Guerrero‐Santos, R., Saldívar‐Guerra, E., Bonilla‐Cruz, J., 2013. Free radical polymerization. Handbook of Polymer Synthesis, Characterization, and Processing, 65-83.
Göktaş, M., 2019. Synthesis and characterization of various block copolymers using PMMA-Br macroinitiator. Chemical Papers, 73: 2329-2339.
Göktaş, M., 2020. Synthesis and characterization of temperature-responsive block copolymers using macromonomeric initiator. Chemical Papers, 74(7): 2297-2307.
Groarke, R.J., Brabazon, D., 2016. Methacrylate polymer monoliths for separation applications. Materials, 9(6): 446.
Hazer, B., Modjinou, T., Langlois, V., Göktaş, M., Taşçı, F., Ashby, R.D., Zhang, B., 2023. Free Radical Polymerization of Dimethyl Amino Ethyl Methacrylate Initiated by Poly (3-hydroxybutyrate-co-3-hydroxyhexanoat e) Macroazo Initiator: Thermal and Physicochemical Characterization. Journal of Polymers and the Environment, 31(8): 3688-3699.
Inceoglu, S., Olugebefola, S.C., Acar, M.H., Mayes, A.M., 2004. Atom transfer radical polymerization using poly (vinylidene fluoride) as macroinitiator. Designed Monomers and Polymers, 7(1-2): 181-189.
Iwasaki, T., Yoshida, J.I., 2005. Free radical polymerization in microreactors. Significant improvement in molecular weight distribution control. Macromolecules, 38(4): 1159-1163.
Kostić, M., Igić, M., Gligorijević, N., Nikolić, V., Stošić, N., Nikolić, L., 2022. The use of acrylate polymers in dentistry. Polymers, 14(21): 4511.
Kreutzer, J., Yagci, Y., 2017. Metal free reversible-deactivation radical polym erizations: advances, challenges, and opportunities. Polymers, 10(1): 35.
Madruga, E.L., 2002. From classical to living/controlled statistical free-radical copolymerization. Progress in Polymer Science, 27(9): 1879-1924.
Matahwa, H., Van Den Dungen, E.T.A., McLeary, J.B., Klumperman, B., 2011. Block, Graft, Star, and Gradient Copolymer Particles. Advanced Polymer Nanoparticles Synthesis and Surface Modifications, 384.
Matyjaszewski, K., Spanswick, J., 2004. Controlled/living radical polymerization. In Handbook of polymer synthesis (pp. 907-954). CRC Press.
Matyjaszewski, K., Tsarevsky, N.V., 2014. Macromolecular engineering by atom transfer radical polymerization. Journal of the American Chemical Society, 136(18): 6513-6533.
Moad, G., Rizzardo, E., Thang, S.H., 2008. Toward living radical polymerization. Accounts of Chemical Research, 41(9): 1133-1142.
Nesvadba, P., 2013. Fundamentals of Controlled/Living Radical Polymerization (Ed: N.V Tsarevsky, B.S. Sumerlin). Controlled/living radical polymerization mediated by stable organic radicals. Polymer Chemistry Series, p: 112-167.
Pan, X., Fantin, M., Yuan, F., Matyjaszewski, K., 2018. Externally controlled atom transfer radical polymerization. Chemical Society Reviews, 47(14): 5457-5490.
Pillai, C.K.S., 2010. Challenges for natural monomers and polymers: novel design strategies and engineering to develop advanced polymers. Designed Monomers and Polymers, 13(2): 87-121.
Potter, O.G., Hilder, E.F., 2008. Porous polymer monoliths for extraction: Diverse applications and platforms. Journal of Separation Science, 31(11): 1881-1906.
Ran, J., Wu, L., Zhang, Z., Xu, T., 2014. Atom transfer radical polymerization (ATRP): A versatile and forceful tool for functional membranes. Progress in Polymer Science, 39(1): 124-144.
Ren, J.M., McKenzie, T.G., Fu, Q., Wong, E.H., Xu, J., An, Z., Qiao, G.G., 2016. Star polymers. Chemical Reviews, 116(12): 6743-6836.
Rooney, T.R., Hutchinson, R.A., 2018. Monomer structure and solvent effects on copolymer composition in (meth) acrylate radical copolymerization. Industrial & Engineering Chemistry Research, 57(15): 5215-5227.
Saputra, A., Wijaya, K., Armunanto, R., Tania, L., Tahir, I., 2017. Determination of effective functional monomer and solvent for R (+)-cathinone imprinted polymer using density functional theory and molecular dynamics simulation approaches. Indonesian Journal of Chemistry, 17(3): 516-522.
Shipp, D.A., 2005. Living radical polymerization: Controlling molecular size and chemical functionality in vinyl polymers. Journal of Macromolecular Science, Part C: Polymer Reviews, 45(2): 171-194.
Tan, C., Si, G., Zou, C., Chen, C., 2025. Functional polyolefins and composites. Angewandte Chemie International Edition, 64(12): e202424529.
Tanış, E., Çankaya, N., Yalçın, S., 2019. Synthesis, experimental and theoretical analysis, and antiproliferative activity of 2-(4-methoxyphenylamino)-2-oxoethyl methacrylate. Chinese Journal of Physics, 57: 348-361.
Vlakh, E.G., Tennikova, T.B., 2009. Applications of polymethacrylate-based monoliths in high-performance liquid chromatography. Journal of Chromatography A, 1216(13): 2637-2650.
Wang, R., Wei, Q., Sheng, W., Yu, B., Zhou, F., Li, B., 2023. Driving polymer brushes from synthesis to functioning. Angewandte Chemie, 135(27): e202219312.
Yamada, B., Zetterlund, P.B., 2002. General chemistry of radical polymerization. Handbook of Radical Polymerization, 117-186.
Zetterlund, P.B., Thickett, S.C., Perrier, S., Bourgeat-Lami, E., Lansalot, M., 2015. Controlled/living radical polymerization in dispersed systems: an update. Chemical Reviews, 115(18): 9745-9800.
Zhang, H., 2013. Controlled/“living” radical precipitation polymerization: A versatile polymerization technique for advanced functional polymers. European Polymer Journal, 49(3): 579-600.
Zhao, Y.L., Cai, Q., Jiang, J., Shuai, X.T., Bei, J.Z., Chen, C.F., Xi, F., 2002. Synthesis and thermal properties of novel star-shaped poly (L-lactide) s with starburst PAMAM–OH dendrimer macroinitiator. Polymer, 43(22): 5819-5825.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 The copyright of the published article belongs to its author.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.