
MAS JAPS 10(1): 141–160, 2025

 DOI: http://dx.doi.org/10.5281/zenodo.15099262

Research Article

Enhancing EMG Signals for Amputee People with Deep Neural Network and

Optimization Algorithms

Çağdaş ÖZER 1* , Zeynep ORMAN 1
1 Istanbul University-Cerrahpaşa, Muhendislik Fakültesi, Bilgisayar Mühendisliği Bölümü, İstanbul

*Corresponding author: cagdas.ozer@ogr.iuc.edu.tr

Received: 12.01.2025 Accepted: 26.02.2025

Abstract

Individuals with amputations often rely on prosthetic limbs to maintain daily functionality; however, over time,

the performance of these devices can be compromised by wear, signal degradation, or other technical issues. In

this study, we investigate the enhancement of electromyography (EMG) signals to mitigate changes in signal

characteristics associated with long-term use by amputees. Our approach employs deep neural networks (DNN)

integrated with various optimization algorithms. Data were acquired using an MYO Armband on the right arms of

seven volunteers performing repeated fist clenching until muscle fatigue set in. The acquired data were augmented

using synthetic data generation techniques and subsequently processed with a DNN that incorporated methods

such as Principal Component Analysis (PCA), low variance and high correlation filters, nonlinear convolution

layers, ensemble learning, bagging, batch normalization, and optimization algorithms including Stochastic

Gradient Descent (SGD), Adagrad, RMSprop, Adam, and Particle Swarm Optimization (PSO). The performance

was evaluated using metrics such as accuracy, precision, recall, and F-measure. Without optimization, the

precision was 0.76; however, after extensive testing of various algorithmic combinations and synthetic data

augmentation, the best configuration achieved a precision of approximately 0.98. These findings demonstrate that,

with carefully selected deep learning and optimization strategies, EMG signals can be processed in near real-time,

thereby significantly reducing the impact of mobility limitations.

Keywords: EMG signals, deep neural networks, optimization, data preprocessing

141

http://dx.doi.org/10.5281/zenodo.15099262
mailto:cagdas.ozer@ogr.iuc.edu.tr
https://orcid.org/0000-0002-0581-7955
https://orcid.org/0000-0002-0205-4198

Özer and Orman

1. Introduction

Since the 1970s, prosthetic limbs have been

instrumental in restoring mobility for millions

of individuals with limb losses (Fukuda et al.,

1998). Advances in prosthetic technology have

enabled improved functionality and greater

independence for users. Early work, such as

that by Wiener, introduced the concept of

using electromyogram (EMG) signals for real-

time control of prosthetic arms. Today, EMG

signals—owing to their natural correlation

with muscle contraction and relaxation

(Artemiadis et al., 2007; Li-Zhi et al., 2018)—

remain a cornerstone for controlling advanced

prosthetic systems, including the Boston Arm

(MIT) and the Utah Artificial Arm (Moradi et

al., 2008).

In this study, we employ an MYO

Armband, a device that utilizes wireless

gesture and motion control technology, to

capture EMG signals from the right arms of

seven volunteers. Our primary objective is to

maximize the detection of muscle signals

during prolonged use, particularly when signal

characteristics change due to muscle fatigue.

To address these challenges, we propose a

machine learning framework that leverages

deep neural networks (DNN) combined with

advanced preprocessing and optimization

techniques.

The collected dataset is first subjected to

preprocessing steps, including removal of

redundant entries, elimination of low-variance

and highly correlated features, normalization,

and Principal Component Analysis (PCA).

These steps are designed to enhance the quality

of the data and reduce training time while

improving classification accuracy.

Subsequently, the preprocessed data are input

into a DNN that integrates various methods

such as low variance filtering, data

augmentation, nonlinear convolution layers,

ensemble learning, bagging, batch

normalization, and multiple optimization

algorithms including Stochastic Gradient

Descent (SGD), Adagrad, RMSprop, Adam,

and Particle Swarm Optimization (PSO). The

results of this integrated approach are

discussed in the Results and Discussion

section. Overall, our study demonstrates that

with appropriate machine learning and

optimization strategies, EMG signals can be

processed accurately and in near real-time,

thereby significantly mitigating the impact of

signal degradation on prosthetic control.

The interpretation and processing of EMG

signals have evolved significantly over the past

decades. Early studies, such as those by

Hardyck and colleagues and J.G. Kreifeldt

(Kreifeldt, 1971), pioneered the use of surface

EMG for signal amplification and noise

reduction. Initial methods focused on

enhancing the signal-to-noise ratio and

involved techniques like low-pass filtering and

autoregressive-moving average models

(Graupe et al., 1975; Nelder et al., 1994).

Subsequent research further advanced

prosthetic control systems. For example, D.

Graupe et al. (1975, 1989) and Peter C.

Doerschuk et al. (1983) demonstrated the

feasibility of using EMG signals for the control

of prosthetic limbs by applying digital signal

processing techniques. These studies laid the

groundwork for understanding the role of

EMG in translating muscle activity into control

commands for devices such as the Boston Arm

and the Utah Artificial Arm (Moradi et al.,

2008).

Throughout the 1980s and 1990s,

researchers investigated various methods to

enhance EMG signal processing. Hershler and

Milner (1978) analyzed EMG characteristics

during locomotion, while studies by Saridis et

al. (1982) and Doerschuk et al. (1983) focused

on minimizing the cognitive load required for

prosthetic control. Subsequent work by

Hultman and Sjöholm (1983), Studer et al.

(1984), and Gerber et al. (1984) introduced

more sophisticated frameworks for

quantitative EMG analysis and optimal

filterbank adaptation. Advances continued

with contributions such as Zhou et al. (1986),

who proposed methods for deriving

intramuscular EMG signals from surface

measurements, and Paiss and Inbar (1987),

who utilized autoregressive models for spectral

analysis of EMG data. In the late 1980s and

early 1990s, research by Winter and Yack

142

Özer and Orman

(1987) and Reucher et al. (1987) further

refined EMG modeling by applying spatial

filtering and statistical analysis techniques.The

1990s saw an increased focus on applying

neural network techniques to EMG signal

classification. Early work by Hiraiwa et al.

(1989) and subsequent studies by Park and Lee

(1998) employed neural networks to classify

EMG patterns for prosthetic control. These

approaches were later augmented with fuzzy

systems and wavelet transforms (Zhang et al.,

2002; Vuckovic et al., 2002), enhancing the

robustness of EMG-based interfaces.

More recent studies have concentrated on

real-time applications and advanced

optimization methods. Chang et al. (1996) and

Fukuda et al. (1997, 1998) explored EMG

discrimination systems for human-machine

interfaces, while later work by Ouyang (2013)

and Goen (2014) addressed dynamic signal

properties and neuromuscular disorder

evaluation. Despite the considerable progress,

relatively few studies have integrated

advanced machine learning techniques with a

comprehensive set of optimization algorithms

for EMG signal enhancement.Our work

extends this body of literature by combining

deep neural networks with a suite of

preprocessing and optimization techniques. By

incorporating methods such as PCA, low

variance and high correlation filtering, and

various optimization algorithms (SGD,

Adagrad, RMSprop, Adam, and Particle

Swarm Optimization), our study aims to

improve EMG signal prediction accuracy,

even in scenarios involving significant signal

degradation. This approach not only builds on

prior research but also introduces novel

algorithmic combinations that enhance the

overall performance of prosthetic control

systems.

2. Materials and Methods

In this study, muscle signal measurements

were performed with MYO Armband

produced by Thalmic Labs. MYO Armband is

a wristband with 8 EMG electrodes, a three-

axis accelerometer, a three-axis gyroscope, and

a three-axis magnetic force measurement. The

ARM Cortex M4 processor manages the

armband operation, while the data

transmission is performed through the BLE

NRF51822 chip, which exchanges data with

the HM-11 BLE module mounted on the

bottom side of the prosthesis driving/control

unit. The MYO armband has 8 separate

electromyography (EMG) sensors, which are

used to read the muscles and figure out what

the limb is doing at that moment. This wrist

strap can also show the orientation of the arm

in 3-dimensional space. The orientation data

from the wristband is transmitted to the

computer via wireless communication

(Bluetooth). After the data is processed with

the software prepared in Python programming

language, it is sent to the computer in real-time

via TCP / IP communication (Erin and Boru,

2018). The EMG data is 200Hz, while the IMU

data is 50Hz. Those speeds are constant and

cannot be changed. And this collection only

works while working with a single armband.

Dataset collected by MYO Armband is

processed and used by Deep Neural Network

with PCA, Low variance Filter, Data

Augmentation, Nonlinear Convolution Layers,

Data Augmentation, Ensembling, Bagging,

Batch Normalization, SGD, Adagrad,

RMSprop, Adam and Particle Swarm

optimization. The main idea is to classify these

data properly and prepare the prediction

models based on this accurate classification.

Since there are 8 sensors, there are 8 fields in

the data showing as emg1, emg2, emg3, emg4,

emg5, emg6, emg7, and emg8. These fields

can be seen from the sample dataset given in

Figure 2. You can see the device and a little bit

of data distribution from the device in the

picture Figure 1 and the data distribution from

the graphical Figure 7 below. From the sample

row of the dataset, as we can see in Figure 7, 8

different sensors have different values

according to the movement of the arm between

the timestamp of start and the end. These

sensor values have a minimum value of -128

and a maximum value of 127.

143

Özer and Orman

Figure 1. MYO Device (Bernhardt, 2015)

2.1. Used techniques

2.1.1. Principal component analysis

Principal component analysis (PCA) is a

statistical procedure that uses an orthogonal

transformation to transform the observation set

of interrelated variables into values of linearly

unrelated variables called principal

components. The number of major

components is less than or equal to the number

of original variables or observations. This

transformation is defined perpendicular to the

previous components such that the first

principal component has the largest possible

variance, and the resulting components all

have the highest possible variance under

constraint. The resulting vectors are a set of

unrelated orthogonal principal components.

PCA is sensitive to the relative scaling of the

original variables. Analysts often use PCA as a

tool for data analysis and building predictive

models. It is often used to visualize genetic

distance and the relationship between

populations. PCA can be done by eigenvalue

decomposition of a data matrix, a data

covariance matrix, or singular value

decomposition after the mean average of the

data matrix for each feature. Results of a PCA

are often discussed in terms of factor scores

and component scores called loading. PCA is

the simplest of true eigenvector-based

multivariate analysis. It is often thought that

their work reveals the internal structure of the

data in a way that best explains the variance in

the data. If a multivariate data set is visualized

as a set of coordinates in a high dimensional

data field, the PCA can present a sub-

dimensional picture of this object, a projection

from the most informative point of view. This

is done by using only the first few basic

components, thus reducing the dimensionality

of the converted data.

2.1.2. Low variance filter

The Low Variance Filter node calculates

each column variance and removes those

columns with variance values below a

specified threshold.

2.1.3. High correlation filter

This technique establishes the specification

of a description step that will potentially

remove variables that have large absolute

correlations with other variables.

2.1.4. Data augmentation

Data augmentation is a useful technique that

is used in almost every cutting-edge machine

learning model in applications such as image

and text classification. Heuristic data

augmentation schemes are often set manually

by human experts with extensive domain

knowledge, resulting in inadequate

augmentation policies. This resulted in new

algorithms to automate the search process of

transformation functions, new theoretical

knowledge that enhances the understanding of

various enhancement techniques widely used

in practice, and a new framework for

harnessing data enhancement to patch a flawed

model and improve performance on the key

data subpopulation.

144

Özer and Orman

2.1.5. Ensemble learning

Ensemble methods work best when

algorithms are independent of each other. One

way to get different classifiers is to train those

using different algorithms. This increases the

likelihood of making different types of

mistakes, which increases the accuracy of the

group. Ensemble itself is a supervised learning

algorithm because it can be trained and then

used to make predictions. Therefore, the

trained ensemble represents a single

hypothesis. However, this hypothesis is not

necessarily included in the hypothesis space of

the models from which it is constructed. Thus,

it can be shown that ensembles have more

flexibility in the functions they can represent.

Theoretically, this flexibility enables them to

fabricate education data more than a single

model. Still, some ensemble techniques

(especially bagging) tend to mitigate problems

associated with overfitting training data in

practice. Empirically, ensembles tend to show

better results when there is significant

variation between patterns. Therefore, many

community methods try to encourage diversity

among the models they combine. However, it

has been shown that using a variety of

powerful learning algorithms is more effective

than using techniques that try to simplify

models to encourage diversity.

2.1.6. Bagging (variance improving)

Bagging is a technique that does boot

clustering. One way to reduce the variance of

an estimate is to average multiple guesses. For

example, we can train M different trees on

different subsets of data (randomly selected by

replacement) and compute the ensemble.

Bagging uses boot sampling to obtain subsets

of data to train basic students. It uses the voting

for bagging, classification, and the average for

regression, to gather the outputs of the core

learners.

Given a training set D= {(x1, y1), . . . (xn,

yn)}

Sample T sets of elements from D (with

replacement) D1, D2, . . . DT→T quasi replica

training sets.

train a machine on each Di,i= 1, ..., T and

obtain a sequence of T outputs f1(x), . . . fT(x).

The final aggregate classifier can be

For Regression:

 𝑓(𝑥) = ∑𝑇
𝑖=1 𝑓𝑖(𝑥) (1)

the average of fi for i= 1, ..., T;

For Classification

 𝑓(𝑥) = 𝑠𝑖𝑔𝑛(∑𝑇
𝑖=1 𝑓𝑖(𝑥)) (2)

2.2. Optimization algorithms

In deep learning applications, the absolute

minimum value of the error function must be

found for the learning process to result

healthily. This process is carried out using

optimization methods. Optimization is the

method used to make the difference between

the output value produced by the network and

the actual value, the error to the smallest. One

of the most used methods for optimizing

artificial neural networks is gradient descent.

There are three gradient descent methods

(Mini-Batch Gradient Descent, Stochastic

Gradient Descent, and Batch Gradient

Descent) depending on the size of the data set

used in a single iteration. Various algorithms

(Rmsprop, Adagrad, Adam, etc.) are based on

the gradient descent method (Kurt, 2018).

While training data, calibrating the learning

coefficient is critical in terms of optimization.

However, it is not possible to fully adjust the

learning coefficient in the model with every

algorithm. Various gradient methods have

been proposed to solve this problem (Li, 2017).

2.2.1. Adagrad

Adagrad makes different updates for each

parameter by using t different learning

coefficients for each step. Thus, it eliminates

the need to adjust the learning coefficient

manually. In Adagrad, each parameter has its

145

Özer and Orman

learning speed. The learning coefficient

becomes excessively smaller because of the

growth of the expression in which the learning

coefficient value is divided in the update

process during training (Çarkacı, 2018).

Adagrad uses a different learning rate for every

parameter θi at every time step t; first, it is

being shown that Adagrad's per-parameter

update, which then is vectorized. For brevity,

gt has been used to denote the gradient at time

step t. gt, i is then the partial derivative of the

objective function w.r.t. to the parameter θi at

time step t:

gt,i=∇θJ(θt,i). (3)

The SGD update for every parameter θi at

each time step t then becomes:

 θt+1,i=θt,i−η⋅gt,i. (4)

In its update rule, Adagrad modifies the

general learning rate η at each time step t for

every parameter θi based on the past gradients

that have been computed for θi:

θt+1,i=θt,i−η / √Gt,ii+ϵ⋅gt,i. (5)

Gt∈Rd×d here is a diagonal matrix where

each diagonal element i, i is the sum of the

squares of the gradients w.r.t. θi up to time step

t, while ϵ is a smoothing term that avoids

division by zero (usually on the order of 1e−8).

As Gt contains the sum of the squares of the

past gradients w.r.t. to all parameters θ along

its diagonal, it can now be vectorized for the

implementation by performing a matrix-vector

product ⊙ between Gt and gt:

θt+1=θt−η / √Gt+ϵ⊙gt. (6)

2.2.2. Rmsprop

Rmsprop has been developed as a solution

to the problem of over-minimizing the learning

coefficient in the Adagrad algorithm. Instead

of using all the values obtained from the

squares of all past slopes in Adagrad, it

restricts the value amount to a certain frame

size (Kurt,2018; Ruder,2016).

E[g2]t=0.9E[g2]t−1+0.1g2
tθt+1=θt−η / √E[g2]t+ϵgt (7)

Rmsprop is similar to AdaGrad, and the

difference is that the denominator is also

decayed.

2.2.3. Adam optimization

ADAM, Adaptive Moment Estimation, is a

more widely used method that adds

momentum to the RMSprop method.

Momentum updating is done with the

exponential moving average, and when dealing

with β, it is not necessary to change the

learning rate. Like in RMSprop, here, the

exponential moving average of the gradient

square is taken. At the beginning of the training

process of neural networks, SGD often goes in

the wrong direction, while RMSprop is

heading in the right direction. However,

RMSprop is also affected by a noise like

classical SGD, i.e. jumps around optimum

when it finds a local minimum, leading to

critical consequences. Just as we add

momentum to the SGD, the same improvement

is achieved with ADAM. The ADAM

Algorithm was also generally regarded as quite

robust in choosing hyperparameters (Studer et

al.,1984).

mt=β1mt−1+(1−β1)gt (8)

vt=β2vt−1+(1−β2)gt
2 (9)

This update rule is like the RMSProp. The

difference is that the cumulative history of

gradients is being looked at as well(m_t).

ADAM is required to train some networks

while using language models. SGD or ADAM

with momentum is generally preferred to

optimize neural networks. However, ADAM's

theory in publications is not well understood,

and it has some drawbacks. In elementary test

problems, the method does not converge. It is

known to give generalization errors. If the

neural network is trained to provide zero loss

in data used for training, it will not lose zero in

other data points it has never seen before. It is

146

Özer and Orman

quite common to get worse generalization

errors, especially when using SGD for image

problems. For example, ADAM or factors in

its structure may include finding the closest

local minimum, i.e. being less noisy. While we

need 3 buffers in ADAM, SGD requires 2

buffers. It is not very important unless we train

a model that is a few gigabytes in size, but in

such a case, it may not fit into memory. Instead

of 1, 2 momentum parameters should be set. In

this method, in addition to using the

exponentially weighted averages (𝐴𝑡) of the

squares of past slopes, as is done in Rmsprop,

it also stores the momentum changes (𝑚𝑡) in

the cache. So, it combines Rmsprop and

momentum. The default values are 0.9 for β1;

It is stated as 0.999 for β2 and 108 for epsilon

(Li, 2017; Çarkacı, 2018).

2.2.4. Stochastic gradient descent

SGD is an iterative optimization technique

that uses mini data stacks to generate the

expectation of the gradient rather than the full

gradient using all available data. A large

dataset containing randomly sampled samples

probably contains redundant data. The larger

the batch size, the more likely the surplus

becomes. Some redundancies can be useful for

smoothing noisy gradients, but massive

batches tend to be of much less predictive

value than large batches (Song et al., 2013).

What if we could get the correct average

gradient for much less computation. We can

predict a larger average from a much smaller

average by picking random samples from our

dataset. Stochastic gradient descent (SGD)

takes this idea to the extreme - using only one

instance (batch size 1) for each iteration. Given

enough iterations, SGD works but is too noisy.

Stochastic means that a sample containing

each batch is randomly selected. SGD

performs a parameter update for each training

example labeled x(i) and y(i):

 θ=θ−η⋅∇θJ(θ;x(i);y(i)). (10)

In the SGD algorithm, the calculation is

made over a training sample instead of all

training data. In this way, possible memory

deficiency problems are prevented (Kurt,

2018).

2.2.5. Particle swarm optimization

In the search field, particles are presented as

potential solutions, and the fitness function is

proposed as the basic mechanism for driving

particle movements. The PSO, which includes

the following people who are part of a

community, has an idea that is part of a "field

of belief" (search space) shared by neighboring

individuals. Individuals can change this "state

of vision" based on three factors:

environmental knowledge; the individual's

previous state history, and previous situations

of the individual's neighborhood. Considering

the rules of interaction, PSO, individuals in

society adapt their belief schemes to more

successful social networks. The rules of one-

dimensional particle motion are shown in

equations as follows:

 vi
t+1=w * vi

t+ d1 *ε1* (pbest− xi
t) + d2* ε2 *(gbest− xi

t) (11)

 xi
t+1=xi

t+vi
t+1 (12)

Where the local best configuration (pbest),

global best (gbest), new velocities (vit+1), and

positions (xit+1) where xit and vit are the

current position and velocity. ε1 and ε2 are

chosen randomly in between (0,1). The

tendency of a particle to remain in its current

position is called inertia coefficient denoted by

w, d1, and d2 (which can be modified as per

requirement), which are referred to as the

individual coefficient of acceleration and

global coefficient of acceleration, respectively.

2.3. Deep neural network

The deep neural network algorithms used in

the study are multi-layered versions of

artificial neural networks that are inspired by

the information processing method of the

human brain. Since the single-layer

perceptron, which was first developed and

147

Özer and Orman

evaluated as the most primitive artificial neural

network, is not sufficient in solving nonlinear

problems, a multi-layer perceptron has been

developed (Fernandez et al., 2006). Most

machine learning and deep learning algorithms

use the idea of gradient descent. And that is

based on the Newton algorithm that is about

finding the roots of a 2d function. To achieve

that, a point is randomly picked and slide to the

left or right along the x-axis, based on the

positive or negative value of the derivative of

the slope of this function at the chosen point

until the value of the y axis function comes to

zero. The same idea is used in gradient descent,

where we move or descend along a given path

in multidimensional weight space. The cost

function continues to decrease and stops when

the error rate stops decreasing. Newton's

method tends to get stuck at the local minimum

if the derivative of the function at the current

point is zero. Similarly, this risk exists when

gradient descent is used on a non-convex

function. The effect is multidimensional (each

dimension represents a weight variable) and is

amplified in the multilayer environment of

DNN, resulting in a non-optimal weight set. In

standard SGD, the learning rate is used as a

constant multiplier of the gradient to calculate

step size or update weight. This can cause the

update to exceed a potential minimum if the

slope is too steep or delay convergence if the

slope is noisy. Using the concept of

momentum in physics, the momentum

algorithm presents a velocity variable v that is

structured as an exponentially decreasing mean

of the gradient. This helps prevent costly

landings in the wrong direction. In the equation

below, a ↋ [0; 1) is the momentum parameter,

and ε is the learning rate. The multi-layer

perceptron contains three layers which is the

input layer, hidden layer(s), and an output

layer. Unlike the single-layer sensor, nonlinear

classification can be made. Depending on the

nature of the problem solved, the number of

hidden layers and the number of neurons in

these layers may change. To create a good

generalization in the modeling process of

architecture, the input data set is divided into

two or three separate parts (Fukuda et al.,

1998; Cichosz, 2015, Matt et al., 2015). In

deep neural network algorithms, the entire data

set is generally divided into two datasets called

training data set and test data set (testing). The

role of the training data set is to calculate the

estimates of the weights in the neural network,

and the role of the test data set is to test the

accuracy of the obtained weight values with

data hidden from the model (Priddy and Keller,

2005; Okut, 2018) works with. In the first stage

of the backpropagation algorithm, variables

are presented to the training network. By

assigning a weight value for each neuron of

each variable, after the values are multiplied by

the weights and summed, it is sent to all

neurons in the next layer by an activation

function in the neurons in the hidden layer by

adding the bias value (Moradi et al., 2008;

Song et al., 2013). These values constitute the

input values for the neurons in the output layer.

After similar operations are performed in the

output layer, an output value is obtained, the

output and the actual value are compared, and

the error value is obtained. In the second stage,

errors obtained from the output layer are

propagated to other layers in a backward

direction. These errors are used to calculate the

slope of the loss function relative to the

weights in the network. Them, to update the

weights for the idea of minimizing the loss

function, optimization methods are used (Okut

et al., 2011; Li, 2017). In this process, the

partial derivative of the error according to the

weights is made by using the chain rule in the

derivative. The incoming information x = [x1,

x2, . . ., xM].

The weights w = [w1, w2, . . ., wM] at the

incoming connections and the bias b for the

neuron, both of which constitute the

parameters of the neuron. An intermediate

processing step within the body of the neuron

is implemented simply as a linear combination

of the incoming data x using the weights w and

bias b. The activation function σ(·) of the

neuron, which applies a nonlinear

transformation to the intermediate result z, thus

creating the neuron's output information, y,.

Therefore, the output of the ANN model can be

viewed as

y = σ (wtx + b).

148

Özer and Orman

Figure 2. Single ANN Model (Gürbüz, 2020)

Figure 2 shows a representation of an

artificial neuron, pointing out its following

main components. Some highly used

activation functions, namely sigmoid, tangent

hyperbolic, and rectified linear unit, are shown

in Figure 5, which also provides their

definitions. The weights and bias of each

neuron are parameters to learn to approach

optimal matching between input and output

data samples. Nonlinear activation functions

are particularly important to allow more

complex nonlinear mappings to be represented

by a network of simple neurons.

Figure 3. Three of the most commonly used activation functions: (a) sigmoid σ(z) = 1 1+e−z, (b) tangent hyperbolic

σ(z) = tanh (z), and (c) rectified linear unit (ReLU) σ(z) = max (0, z) (Gürbüz, 2020)

An ANN consists of interconnections of

neurons in a layered structure. The first layer

of neurons takes data samples as input, while

the last layer produces output samples, whether

classification or regression results. There are

one or more hidden layers that progressively

transform the first layer neuron activations into

final output samples. Figure 4 shows an ANN

example with two hidden layers.

149

Özer and Orman

Figure 4. An ANN structure with two hidden layers

As the number of hidden layers increases,

the ANN structure gets deeper and turns into a

DNN. Although ANNs with many hidden

layers are called DNN in the literature, deep

learning and DNN structures are mostly related

to the ability to learn features from raw sensor

data and the models and structures that

facilitate this ability.

2.4. Proposed work

It is aimed to use optimization algorithms to

the fullest to accurately predict EMG signals

with the proposed deep learning model. In this

section, the processes in the proposed model

will be explained in detail. The pseudocode of

the deep learning framework used in the study

is as shown below in Figure 5:

Figure 5. Pseudo-code of the deep learning framework

The parameters that it has been used are

60% training 20% test, 20% validation, 100

epochs, 0.2 learning rate, Sigmoid activation

function, low signal data as the input value,

and to predict the correct signal data as the

output value. Multiple approaches with many

epochs and learning rates have been tried to

find the optimized parameters. The result

obtained from the proposed model is the

calculated mean of those many tries; therefore,

150

Özer and Orman

it can be seen that this result was not for one

time and was calculated mathematically to

show its robustness.

Step 1. To prepare for better results,

preprocessing was done before the model. At

the start, Min-Max feature scaling was applied

because this step is also a requirement for

standardization. So, the data of EMG signals

were normalized with the formula below.

Xscaled = (x – min(x)) / (max(x) – min(x))

X represents a single feature/variable

vector.

Since there are no missing values from the

dataset that we have taken from the MYO

Armband device, no techniques are needed to

fill them.

Step 2. When the feature scaling is over, the

following techniques were applied to enhance

the results further. These techniques are PCA,

low variance filter, high correlation filter, data

augmentation, ensemble learning, and

bagging.

Step 3. In this step, data is divided into

training, testing, and validation. This process is

not random, as the data is handpicked to avoid

the randomness of the results.

Step 4. To see the prediction values from the

Deep Neural Network, a standard model was

applied without any optimization model or

preprocessing techniques. It can be seen the

accuracy result of the current data, with the

correct picking of weights (random at first) and

the number of hidden layers (in our case, it

seems 8) and using the different activation

functions (in our case, sigmoid worked the

best) and the modifying the learning rates and

the weights with the help of backpropagation

algorithm to reach the upper numbers of the

prediction.

Step 5. After the model gives a prediction

result, it is time to use optimization algorithms

and preprocessing techniques to increase the

prediction value of the model further. This is

the step that took most of the time in the

research. First, it started with one optimization

algorithm only, and that is Adam Optimization

because it has been known before that Adam

Optimization works well with Neural

Networks. After that, many Optimization

algorithms were applied single, and then

combinations of these optimization algorithms

were tested to reach the best result; this step

took 916 tries. And the best-combined result in

the model with the dataset comes from the

combination of Adagrad, RMSProp, Adam

Optimization, Stochastic Gradient Descent,

and PSO with Deep Neural Networks.

3. Findings and Discussion

The Deep Neural Network and all other

techniques were implemented via Python, and

the results are shown in Table 1 and Table 2.

Table 1 shows the results of the Deep Neural

Network, without any of the preprocessing and

optimization methods applied. It can be seen

from Table 1 that the raw data results are not

considered high enough to be useful. Table 2

shows the results of the Deep Neural Network

with PCA, Low variance Filter, Data

Augmentation, Nonlinear Convolution Layers,

Data Augmentation, Ensembling, Bagging,

Batch Normalization, SGD, Adagrad,

RMSprop, Adam and Particle Swarm

optimization. It can be seen from Table 2 that

with more Synthetic data, and more specified

hidden layers, with the help of preprocessing

optimization methods, results are reached a

point where they could be seen as reasonable.

Future work can test and study more

classification techniques, optimization

methods, and different movements. Also, more

feature extraction methods and other machine

learning algorithms can be chosen to improve

the results, or these methods can be used in a

situation other than EMG signals.

151

Özer and Orman

Table 1. Model results before proposed method (DNN only)

Table 2. Model combination results

Model Accuracy F Measure Precision Recall

Deep Neural Network

0.74 0.73 0.76 0.71

Standard Deviation Standard Deviation Standard Deviation Standard Deviation

0.002 0.005 0.009 0.003

Deep Neural Network

 + Preprocessing

0.77 0.76 0.79 0.74

Standard Deviation Standard Deviation Standard Deviation Standard Deviation

0.004 0.007 0.007 0.005

Deep Neural Network
 + Preprocessing

 + Adam

0.82 0.81 0.84 0.76

Standard Deviation Standard Deviation Standard Deviation Standard Deviation

0.004 0.008 0.007 0.006

Deep Neural Network

 + Preprocessing

 + SGD

0.8 0.79 0.77 0.73

Standard Deviation Standard Deviation Standard Deviation Standard Deviation

0.003 0.007 0.009 0.006

Deep Neural Network
 + Preprocessing

 + SGD + PSO

0.84 0.83 0.82 0.78

Standard Deviation Standard Deviation Standard Deviation Standard Deviation

0.004 0.003 0.008 0.005

Deep Neural Network (With

Synthetic Data)

 + Preprocessing

 + SGD + Adam

0.87 0.84 0.86 0.81

Standard Deviation Standard Deviation Standard Deviation Standard Deviation

0.004 0.008 0.004 0.005

Deep Neural Network (With

Synthetic Data)

 + Preprocessing

 + SGD + RMSProp + PSO

0.91 0.9 0.91 0.88

Standard Deviation Standard Deviation Standard Deviation Standard Deviation

0.004 0.007 0.009 0.006

Model Accuracy F Measure Precision Recall

Deep Neural Network

0.74 0.73 0.76 0.71

Standard Deviation Standard Deviation Standard Deviation Standard Deviation

0.002 0.005 0.009 0.003

152

Özer and Orman

From Figure 7, you can see the differences

between the normal model and the proposed

model graphically.

Metric based results are accuracy,

Accuracy defines the distance between the

actual value and the measured value (Sammut

and Webb, 2015).

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
(𝑇𝑃 + 𝑇𝑁)

(𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁)

While

True Positive (TP): is where the signal is

strong, and our model correctly predicts a

strong signal

True Negative (TN) is where the signal is

weak, and our model correctly predicts a weak

signal

False Positive (FP): is where the signal is

strong, and our model predicts a weak signal

False Negative (FN): is where the signal is

weak, and our model predicts a strong signal

Precision,

Precision defines the distance between the

measured values (Sammut and Webb, 2015).

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
(𝑇𝑃)

(𝑇𝑃 + 𝐹𝑃)

Recall,

𝑅𝑒𝑐𝑎𝑙𝑙 =
(𝑇𝑃)

(𝑇𝑃 + 𝐹𝑁)

and F Measure.

𝐹 𝑀𝑒𝑎𝑠𝑢𝑟𝑒 =
(2 ∗ 𝑇𝑃)

(2 ∗ 𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁)

It can be seen from Table 1 that with the

dataset of 152,842 rows, our Deep Neural

Network Model has shown 0,74 Accuracy,

0,73 F Measure, 0,76 Precision and 0,71 Recall

results before techniques (with 152,842 rows)

In Table 2, results of some of the

combination that has been made can be seen.

Including parameter tuning, preprocessing

steps, optimization algorithm applications, and

everything that is included in this search took

a total of 916 tries. With the creation of

synthetic data for further training, the dataset

reached 24,728,319 rows. The best result, with

the combination of the selected Optimization

Algorithms, our model shows 0,93 Accuracy,

0,96 F Measure, 0,98 Precision, and 0,92

Recall. The significant improvement of the

results within the model can be seen in Table

3.

Table 3. Model results after the proposed method (AdaGrad + RMSProp, adam, stochastic gradient descent

+ PSO + DNN)

Model Accuracy F Measure Precision Recall

Deep Neural Network (With

Synthetic Data) + Adam +

Adagrad + RMSProp + SGD +

PSO

0.93 0.96 0.98 0.92

Standard Deviation Standard Deviation Standard Deviation Standard Deviation

0.005 0.017 0.009 0.01

153

Özer and Orman

From Figure 6, it can be seen that, between

the proposed model and the raw results, there

is a big difference. It shows that with more

data, preprocessing and optimization

algorithm combinations make a big difference

in the prediction result of the model.

Figure 6. Calculated accuracy, f-measure, precision and recall

Figure 7. Sample from the dataset numeric

154

Özer and Orman

Figure 8. Data Distribution of 100 rows from dataset graphical

4. Conclusion

This study demonstrates that integrating

deep neural networks with advanced

preprocessing and optimization techniques

significantly enhances the prediction of

electromyography (EMG) signals. By

employing methods such as Principal

Component Analysis, low variance and high

correlation filters, data augmentation, and

ensemble approaches, combined with

optimization algorithms—including Adagrad,

RMSprop, Adam, Stochastic Gradient

Descent, and Particle Swarm Optimization—

we achieved substantial improvements in

performance metrics. In particular, the

precision of the model improved from 0.76

without optimization to approximately 0.98

after applying the proposed methodology.

The results indicate that robust EMG signal

processing can be achieved in near real-time,

potentially reducing the impact of signal

degradation on the control of prosthetic

devices. This advancement not only

contributes to the field of prosthetic control but

also opens avenues for further research on real-

life implementations using compact hardware

platforms such as Arduino or Raspberry Pi.

Future work will explore alternative

classification techniques, additional

optimization methods, and further refinements

in feature extraction to enhance model

performance. The promising results of this

study underscore the potential for machine

learning applications to improve the quality of

life for individuals with amputations by

ensuring more reliable and accurate prosthetic

control.

References

Abel, E.W., Zacharia, P.C., Forster, A., Farrow,

T.L., 1996. Neural network analysis of the

EMG interference pattern. Medical

Engineering and Physics, 18(1): 12-17.

Andreas, G., Studer, R.M., de Figueiredo Rui

J.P., Moschytz George, S., 1984. A new

framework and computer program for

quantitative emg signal analysis. IEEE

Transactions on Biomedical Engineering,

31(12).

Artemiadis, P.K., Kyriakopoulos, K.J., 2007.

EMG-based position and force control of a

robot arm: Application to teleoperation and

orthosis. IEEE/ASME International

Conference on Advanced Intelligent

Mechatronics, pp:6.

Bernhardt, P., 2015. MYO Developer Blog.

(https://developerblog.myo.com/), (Access

Date: 03.01.2025).

Bodruzzaman, M., Devgan, S., Kari, S., 1992.

Chaotic classification of electromyographic

(EMG) signals via correlation dimension

measurement. IEEE Proceedings of South-

East Conference, Birmingham, pp. 95-98.

Cichosz, P., 2015. Data Mining Algorithms:

Explained Using R. United States: John

Wiley & Sons.

Çarkacı, N., 2018. Derin öğrenme

uygulamalarında en sık kullanılan hiper

parameteler. (https://medium.com/deep-

learning-turkiye/derin-ogrenme-uygulama

larinda-en-sik-kullanilan-hiper-parametre

ler-ece8e9125c4), (Accessed: 05.01.2025).

155

https://developerblog.myo.com/

Özer and Orman

Daniel, G., William, K.C., 1975. Functional

separation of EMG signals via ARMA

identification methods for prosthesis

control purposes. Conference Proceedings

of Systems, Man and Cybernetics

International Conference on IEEE, pp. 252-

259.

Doerschuk Peter, C., Donald E., Gustafon, A.,

Willsky, S., 1983. Upper extremity limb

function discrimination using EMG signal

analysis. Biomedical Engineering, 18-29.

Dwyer, G., Noguchi, Y., Szeto, H.H., 1989.

EMG burst waveform recognition

procedure. Proceedings of the 1989

Fifteenth Annual Northeast on

Bioengineering Conference, 27-28th March,

Boston, MA, pp. 235-236.

Edward, A., Clancy Neville H., 1995. Multiple

site electromyograph amplitude estimation.

IEEE Transactions on Biomedical

Engineering, 42(2).

Erin, K., Boru, B., 2018. Real-time control of

industrial robot arm with EMG and

gyroscope data. Sakarya University Journal

of Science, 22(2): 509-515.

Farina, D., Merletti, R., 2000. Comparison of

algorithms for estimation of EMG variables

during voluntary isometric contractions.

Journal of Electro-myography and

Kinesiology, 10(5): 337-349.

Fernandez, C., Soria, E., Martin, J.D., Serrano,

A.J., 2006. Neural networks for animal

science applications: Two case studies.

Expert Systems With Applications. 31: 444-

450.

Friedman, J.H., 2001. Greedy function

approximation: A gradient boosting

machine. The Annals of Statistics, 29(5):

1189-1232.

Fukuda, O., Tsujı, T., Ohtsuka A., Kaneko, M.,

1998. EMG-based human-robot ınterface

for rehabilitation aid. IEEE International

Conference on Robotics and Automation,

Proceedings Book, pp. 3492-3497.

Fukuda, O., Tsuji, T., Kaneko, M., 1997. An

EMG controlled robotic manipulator using

neural networks. 6th IEEE International

Workshop on Robot and Human

Communication, Proceedings Book, 29

September-1 October, pp.442-447.

Fukuda, O., Tsuji, T., Ohtsuka, A., Kaneko, M.,

1998. EMG-based human-robot interface

for rehabilitation aid. IEEE International

Conference on Robotics and Automation,

Proceedings Book, 16-20 May, pp. 3492-

3497.

Geoffrey, L.S., 2012. Application of time-

varying analysis to diagnostic needle

electromyography, Medical Engineering &

Physics, 34(2): 249-255.

Goen, A., 2014. Classification of EMG signals

for assessment of neuromuscular disorders.

International Journal of Electronics and

Electrical Engineering, 2(3).

Graupe, D., 1989. EMG Pattern analysis for

patient-responsive control of fes in

paraplegics for walker-supported walking.

IEEE Transactions on Bio-medical

Engineering, 36(7): 711-721.

Graupe, D., Kohn, K.H., Basseas, S.P., 1989.

Control of electrically-stimulated walk-ing

of paraplegics via above- and below-lesion

EMG signature identification. IEEE

Transactions on Automatic Control, 34(2):

130-138.

Gurbuz, S., 2020. Deep Neural Network

Design for Radar Applications. The

Institution of Engineering and Technology:

Stevenage, UK.

Gut, R., Moschytz George S., 2000. High-

precision EMG signal decomposition using

communication techniques. IEEE

Transactions on Signal Processing, 48(9):

2487-2494.

Gwo-Ching, C., Wen-Juh, K., Jer-Junn, L.,

Cheng-Kung, C., Jin-Hae-Jeong, P., Sung-

Hoon, K., Hee-Chan K., Kwang-Suk, P.,

1999. Adaptive EMG-driven

communication for the disabled.

Proceedings of Engineering in Medicine

and Biology, 21st Annual Conference and of

the Bio-medical Engineering Society

Conference, 13-16 October, Atlanta, GA.

156

Özer and Orman

Hefftner, G., Zucchini, W., Jaros, G.G., 1988.

The electromyogram (EMG) as a control

signal for functional neuromuscular

stimulation. I. Autoregressive modeling as a

means of EMG signature discrimination.

IEEE Transactions on Biomedical

Engineering, 35(4): 230-237.

Henneberg, K.A., Plonsey, R., 1993. Boundary

element analysis of the directional

sensitivity of the concentric EMG electrode.

IEEE Transactions on Bio-medical

Engineering, 40(7), 621-631.

Hershler, C., Morris M., 1978. An optimality

criterion for processing electromyographic

(EMG) signals relating to human

locomotion. Biomedical Engineering, IEEE

Transactions, pp. 413-420.

Hiraiwa, A., Yukio Tokunaga, K.S., 1989.

EMG Pattern Analy-sis and Classification

by Neural Network. Conference

Proceedings of Systems, Man and

Cybernetics International Conference on

IEEE, pp. 1113-1115.

Hultman, E., Sjöholm, H., 1983.

Electromyogram, force and relaxation time

during and after continuous electrical

stimulation of human skeletal muscle in

situ. The Journal of Physiology, 33-40.

Ito, K., Tsuji, T., Kato, A., Ito, M., 1992. An

EMG controlled prosthetic forearm in three

degrees of freedom using ultrasonic motors.

14th Annual International Conference of

the IEEE on Engineering in Medicine and

Biology Society, Oct 29-Nov 1, Paris,

pp.1487-1488.

Jingdong, Z., Zongwu, X., Li, J., Hegao, C.,

Hong, L., Hirzinger, G., 2006. EMG control

for a five-fingered prosthetic hand based on

wavelet trans-form and autoregressive

model. Proceedings of the 2006 IEEE

International Conference on Mechatronics

and Automation, 25-28 June, Luoyang,

Henan, pp.1097-1102.

Jun-Uk C., Inhyuk, M., Yun-Jung, L., Shin-Ki,

K., Mu-seong, M., 2007. A supervised

feature-projection-based real-time EMG

pattern recognition for multifunction

myoelectric hand control. IEEE/ASME

Transactions on-Mechatronics.

Kamen, G., Caldwell Graham E., 1996.

Physiology and ınterpretation of the

electromyogram. Journal of Clinical

Neurophysiology, 13(5): 366-384.

Kang, W.J., Cheng, C.K., Lai, J.S., Shiu, J.R.,

Kuo, T.S., 1996. A comparative analysis of

various EMG pattern recognition methods.

Medical Engineering & Physics, 18(5):

390–395.

Kermani, M.Z., Tehran, Iran., Badie, K., 1989.

An intelligent strategy for motion

interpretation in an EMG-controlled

prosthesis. International Conference of the

IEEE Engineering in Engineering in

Medicine and Biology Society, 9-12

November, 5: 1682-1683.

Kreifeldt John, G., 1971. Signal versus noise

characteristics of filtered EMG used as a

control source. Biomedical Engineering,

IEEE Transactions, 16-22.

Kurt, F., 2018. Evrişimli sinir ağlarında hiper

parametrelerin etkisinin incelenmesi

Yüksek Lisans Tezi, Hacettepe

Üniversitesi, Fen Bilimleri Enstitüsü.

Ankara, Türkiye.

Kutlu, H., 2018. Biyoistatistik temelli bilimsel

araştırmalarda derin öğrenme uygulamaları.

Yüksek Lisans Tezi, Yakındoğu

Üniversitesi, Sağlık Bilimleri Enstitüsü,

Lefkoşa, Kıbrıs.

Lee, S., Sankai, Y., 2002. Power assist control

for walking aid with HAL-3 based on EMG

and impedance adjustment around knee

joint. IEEE/RSJ International Conference

on Intelligent Robots and Systems, 2: 1499-

1504.

Li, P., 2017. Optimization algorithms for deep

learning. department of systems

engineering and engineering management.

Li-Zhi, L., Yi-Li, T., Hsin-Han, C., 2018.

EMG-based control scheme with svm

classifier for assistive robot arm.

International Automatic Control

Conference (CACS), pp.1-5.

157

Özer and Orman

Maksutov, R., 2018. Deep study of a not very

deep neural network. part 3b: choosing an

optimizer. (https://medium.com/@maksu

tov.rn/deep-study-of-a-not-very-deep-neura

l-network-part-3b-choosing-an-optimizer-

de8965aaf1ff), (Accessed: 05.01.2025).

Manabe, H., Zhang, Z, 2004. Multi-stream

HMM for EMG-based speech recognition.

26th Annual International Conference of

the IEEE engineering in Medi-cine and

Biology Society, San Francisco, pp.4389-

4392.

Matt, F., Somesh, J., Thomas, R., 2015. Model

Inversion Attacks that Exploit Confidence

Information and Basic Countermeasures. In

ACM SIGSAC Conference on Computer

and Communications Security.

Mesin, L., Farina, D., 2005. A model for

surface EMG generation in volume

conductors with spherical inhomogeneities.

IEEE Transactions of Biomedical

Engineering, 52(12): 1984-1993.

Moradi, M., Hashtrudi-Zaad, K., Mountjoy,

K., and Morin, E., 2008. An EMG-based

force control system for prosthetic arms.

Canadian Conference on Electrical and

Computer Engineering, pp.1737-1742.

Morita, S., Kondo, T., Ito, K., 2001. Estimation

of forearm movement from EMG signal and

application to prosthetic hand control.

Proceedings of IEEE International

Conference on Robotics and Automation,

pp.3692-3697.

Nikolic, Z.M., Popovic, D.B., Stein, R.B.,

Kenwell, Z., 1994. Instrumentation for

ENG and EMG recordings in FES systems.

IEEE Transactions on Biomedical

Engineering, 41(7): 706.

Nishikawa, D., Wenwei, Yu., Yokoi, H.,

Kakazu, Y., 1999. EMG prosthetic hand

controller using real-time learning method.

Proceedings of IEEE International

Conference on Systems, Man, and

Cybernetics, 12-15 October, Tokyo, pp.153-

158.

Nishikawa, D., Wenwei, Yu., Yokoi, H.,

Kakazu, Y., 1999. EMG prosthetic hand

controller discriminating ten motions using

real-time learning method. Proceedings of

IEEE/RSJ International Conference on

Intelligent Robots and Systems, Kyongju,

pp.1592-1597.

Okut, H., 2018. Machine learning methods for

big data and genomic selection: r

application. Workshop Material,

International Agricultural Congress, 8

May, Van, Turkey.

Okut, H., Gianola, D., Rosa, G.J.M., Weigel,

K.A., 2011. Prediction of body mass index

in mice using dense molecular markers and

a regularized neural network. Genetics

Research, 93(3): 189-201.

Ouyang, G., Zhu, X., Ju, Z., Liu, H., 2013.

Dynamical characteristics of surface EMG

signals of hand grasps via recurrence plot.

IEEE Journal of Biomedical and Health

Informatics, 257-265.

Paiss, Omry., Inbar, G.F., 1987. Autoregressive

modeling of surface EMG and ıts spectrum

with application to fatigue. IEEE

Transactions on Biomedical Engineering,

34(10): 761-770.

Paul, G.M., Fan, Cao., Torah, R., Kai, Yang.,

Beeby, S., Tudor, J., 2014. A smart textile

based facial EMG and EOG computer

ınterface. Sensors Journal, 14(2): 393-400.

Priddy, K.L., Keller, P.E., 2005. Artificial

neural network: An Introduction, 1st. Ed.,

Spie Press, Washington.

Reucher, H., Silny, J., Rau, G., 1987. Spatial

filtering of noninvasivemultielec-trode

EMG: Part II-filter performance in theory

and modeling. IEEE Transactions on

Biomedical Engineering, 34(2): 106-113.

Ruder, S., 2016. An overview of gradient

descent optimization algorithms.

(http://adsabs.harvard.edu/abs/2016arXiv1

60904747R), (Accessed: 05.01.2025).

158

http://adsabs.harvard.edu/abs/2016arXiv160904747R
http://adsabs.harvard.edu/abs/2016arXiv160904747R

Özer and Orman

Sammut, C., Webb, G.I., 2015. Encyclopedia

of machine learning and data mining,

Springer.

Sang-Hui, P., Seok P., 1998. EMG pattern

recognition based on artificial ıntelligence

techniques. IEEE Transactions On

Rehabilitation Engineering, 6(4).

Saridis George N., Thomas, P., 1982. EMG

pattern analysis and classification for a

prosthetic arm. Biomedical Engineering,

IEEE Transactions, 6: 403-412.

Sharma, A., 2017. Understanding activation

functions in neural networks.

(https://medium.com/the-theory-of-everyt

hing/understanding-activation-functions-

in-neural-networks-9491262884e0),

(Accessed: 05.01.2025).

Shin, L., Jia-Jin, J., Chen Te-Son, K., 1996.

Real-time implementation of

electromyogram pattern recognition as a

control command of man-machine

interface. Medical Engineering and

Physics, 18(7): 529-535.

Song, S., Chaudhuri K., Sarwate, A.D., 2013.

Stochastic gradient descent with

differentially private updates. IEEE Global

Conference on Signal and Information

Processing, Austin, pp. 245-248.

Stefan Karlsson, J., Karin, R., Christer G.,

Andreas, H., Nils Ö., 1887. Signal

processing of the surface electromyogram

to gain insight into neuromuscular

physiology. Medical Engineering and

Physics, Elsevier.

Studer, R.M., de Figueiredo Rui J.P., Moschytz

George S., 1984. An algorithm for

sequential signal estimation and system

ıdentification for emg signals. IEEE

Transactions on Biomedical Engineering,

31(3): 285-295.

Su, H., Nelder, J.A., Spence, R., Ismail, M.,

1994. Generalized linear models for

empirical performance modeling in circuit

design. Proceedings of APCCAS'94-Asia

Pacific Conference on Circuits and

Systems.

Şengöz, N., 2017. Yapay sinir ağları.

(http://www.derinogrenme.com/author/nilg

unsengoz/), (Accessed: 08.01.2025).

Tsuji, T., Shigeyoshi, H., Kaneko, M., 2000.

Bio-mimetic impedance control of an

EMG-controlled prosthetic hand.

Proceedings of IEEE/RSJ International

Conference on Intelligent Robots and

Systems, 31 October – 5 November,

Takamatsu, pp.377-382.

Vuckovic, M., Sijiang, D., 2002. Classification

of prehensile EMG patterns with simplified

fuzzy ARTMAP networks. Proceedings of

the 2002 International Joint Conference on

Neural Networks, 12-17 May, Honolulu,

HI. pp.2539-2544.

Winter, D.A., Yack, H.J., 1987. EMG profiles

during normal human walking: stride-to-

stride and inter-subject variability.

Electroencephalography and Clinical

Neurophysiology, 67: 402-411.

Xiaowen, Z., Yupu, Y., Xiaoming, X., Ming Z.,

2002. Wavelet-based neuro-fuzzy

classification for EMG control. IEEE 2002

International Conference on

Communications, Circuits, and Systems and

West Sino Expositions, 29 June- 1 July,

pp.1087-1089.

Yitong, Z., Chellappa, R., Bekey, G., 1986.

Estimation of intramuscular EMG signals

from surface EMG signal analysis.

Acoustics, Speech, and Signal Pro-cessing,

IEEE International Conference on ICASSP,

pp.1805-1808.

Zahedi, E., Farahani, H., 1995. Graphical

simulation of artificial hand motion with

fuzzy EMG pattern recognition. 14th

Conference of the Biomedical Engineering

Society of India an International Meeting.

Zardoshti-Kermani, M., Badie, K., Hashemi,

R.M., 1995. EMG feature evaluation for

movement control of upper extremity

prostheses. IEEE Transactions on

Rehabilitation Engineering, 3(4): 324-333.

159

http://www.derinogrenme.com/author/nilgunsengoz/
http://www.derinogrenme.com/author/nilgunsengoz/

Özer and Orman

Zennaro, D., Wellig, P., Koch, V.M., Moschytz

George, S., Laubli, T., 2003. A software

package for the decomposition of long-term

multichannel EMG signals using wavelet

coefficients. IEEE Transactions on

Biomedical Engineering, 50(1): 58-69.

To Cite: Özer, Ç., Orman, Z., 2025. Enhancing EMG Signals for Amputee People with Deep Neural Network and

Optimization Algorithms. MAS Journal of Applied Sciences, 10(1): 141-160.

DOI: http://dx.doi.org/10.5281/zenodo.15099262.

160

