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Abstract 

Individuals with amputations often rely on prosthetic limbs to maintain daily functionality; however, over time, 

the performance of these devices can be compromised by wear, signal degradation, or other technical issues. In 

this study, we investigate the enhancement of electromyography (EMG) signals to mitigate changes in signal 

characteristics associated with long-term use by amputees. Our approach employs deep neural networks (DNN) 

integrated with various optimization algorithms. Data were acquired using an MYO Armband on the right arms of 

seven volunteers performing repeated fist clenching until muscle fatigue set in. The acquired data were augmented 

using synthetic data generation techniques and subsequently processed with a DNN that incorporated methods 

such as Principal Component Analysis (PCA), low variance and high correlation filters, nonlinear convolution 

layers, ensemble learning, bagging, batch normalization, and optimization algorithms including Stochastic 

Gradient Descent (SGD), Adagrad, RMSprop, Adam, and Particle Swarm Optimization (PSO). The performance 

was evaluated using metrics such as accuracy, precision, recall, and F-measure. Without optimization, the 

precision was 0.76; however, after extensive testing of various algorithmic combinations and synthetic data 

augmentation, the best configuration achieved a precision of approximately 0.98. These findings demonstrate that, 

with carefully selected deep learning and optimization strategies, EMG signals can be processed in near real-time, 

thereby significantly reducing the impact of mobility limitations. 
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1. Introduction 

Since the 1970s, prosthetic limbs have been 

instrumental in restoring mobility for millions 

of individuals with limb losses (Fukuda et al., 

1998). Advances in prosthetic technology have 

enabled improved functionality and greater 

independence for users. Early work, such as 

that by Wiener, introduced the concept of 

using electromyogram (EMG) signals for real-

time control of prosthetic arms. Today, EMG 

signals—owing to their natural correlation 

with muscle contraction and relaxation 

(Artemiadis et al., 2007; Li-Zhi et al., 2018)—

remain a cornerstone for controlling advanced 

prosthetic systems, including the Boston Arm 

(MIT) and the Utah Artificial Arm (Moradi et 

al., 2008). 

In this study, we employ an MYO 

Armband, a device that utilizes wireless 

gesture and motion control technology, to 

capture EMG signals from the right arms of 

seven volunteers. Our primary objective is to 

maximize the detection of muscle signals 

during prolonged use, particularly when signal 

characteristics change due to muscle fatigue. 

To address these challenges, we propose a 

machine learning framework that leverages 

deep neural networks (DNN) combined with 

advanced preprocessing and optimization 

techniques. 

The collected dataset is first subjected to 

preprocessing steps, including removal of 

redundant entries, elimination of low-variance 

and highly correlated features, normalization, 

and Principal Component Analysis (PCA). 

These steps are designed to enhance the quality 

of the data and reduce training time while 

improving classification accuracy. 

Subsequently, the preprocessed data are input 

into a DNN that integrates various methods 

such as low variance filtering, data 

augmentation, nonlinear convolution layers, 

ensemble learning, bagging, batch 

normalization, and multiple optimization 

algorithms including Stochastic Gradient 

Descent (SGD), Adagrad, RMSprop, Adam, 

and Particle Swarm Optimization (PSO). The 

results of this integrated approach are 

discussed in the Results and Discussion 

section. Overall, our study demonstrates that 

with appropriate machine learning and 

optimization strategies, EMG signals can be 

processed accurately and in near real-time, 

thereby significantly mitigating the impact of 

signal degradation on prosthetic control. 

The interpretation and processing of EMG 

signals have evolved significantly over the past 

decades. Early studies, such as those by 

Hardyck and colleagues and J.G. Kreifeldt 

(Kreifeldt, 1971), pioneered the use of surface 

EMG for signal amplification and noise 

reduction. Initial methods focused on 

enhancing the signal-to-noise ratio and 

involved techniques like low-pass filtering and 

autoregressive-moving average models 

(Graupe et al., 1975; Nelder et al., 1994). 

Subsequent research further advanced 

prosthetic control systems. For example, D. 

Graupe et al. (1975, 1989) and Peter C. 

Doerschuk et al. (1983) demonstrated the 

feasibility of using EMG signals for the control 

of prosthetic limbs by applying digital signal 

processing techniques. These studies laid the 

groundwork for understanding the role of 

EMG in translating muscle activity into control 

commands for devices such as the Boston Arm 

and the Utah Artificial Arm (Moradi et al., 

2008). 

Throughout the 1980s and 1990s, 

researchers investigated various methods to 

enhance EMG signal processing. Hershler and 

Milner (1978) analyzed EMG characteristics 

during locomotion, while studies by Saridis et 

al. (1982) and Doerschuk et al. (1983) focused 

on minimizing the cognitive load required for 

prosthetic control. Subsequent work by 

Hultman and Sjöholm (1983), Studer et al. 

(1984), and Gerber et al. (1984) introduced 

more sophisticated frameworks for 

quantitative EMG analysis and optimal 

filterbank adaptation. Advances continued 

with contributions such as Zhou et al. (1986), 

who proposed methods for deriving 

intramuscular EMG signals from surface 

measurements, and Paiss and Inbar (1987), 

who utilized autoregressive models for spectral 

analysis of EMG data. In the late 1980s and 

early 1990s, research by Winter and Yack 
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(1987) and Reucher et al. (1987) further 

refined EMG modeling by applying spatial 

filtering and statistical analysis techniques.The 

1990s saw an increased focus on applying 

neural network techniques to EMG signal 

classification. Early work by Hiraiwa et al. 

(1989) and subsequent studies by Park and Lee 

(1998) employed neural networks to classify 

EMG patterns for prosthetic control. These 

approaches were later augmented with fuzzy 

systems and wavelet transforms (Zhang et al., 

2002; Vuckovic et al., 2002), enhancing the 

robustness of EMG-based interfaces. 

More recent studies have concentrated on 

real-time applications and advanced 

optimization methods. Chang et al. (1996) and 

Fukuda et al. (1997, 1998) explored EMG 

discrimination systems for human-machine 

interfaces, while later work by Ouyang (2013) 

and Goen (2014) addressed dynamic signal 

properties and neuromuscular disorder 

evaluation. Despite the considerable progress, 

relatively few studies have integrated 

advanced machine learning techniques with a 

comprehensive set of optimization algorithms 

for EMG signal enhancement.Our work 

extends this body of literature by combining 

deep neural networks with a suite of 

preprocessing and optimization techniques. By 

incorporating methods such as PCA, low 

variance and high correlation filtering, and 

various optimization algorithms (SGD, 

Adagrad, RMSprop, Adam, and Particle 

Swarm Optimization), our study aims to 

improve EMG signal prediction accuracy, 

even in scenarios involving significant signal 

degradation. This approach not only builds on 

prior research but also introduces novel 

algorithmic combinations that enhance the 

overall performance of prosthetic control 

systems. 

 

2. Materials and Methods 

In this study, muscle signal measurements 

were performed with MYO Armband 

produced by Thalmic Labs. MYO Armband is 

a wristband with 8 EMG electrodes, a three-

axis accelerometer, a three-axis gyroscope, and 

a three-axis magnetic force measurement. The 

ARM Cortex M4 processor manages the 

armband operation, while the data 

transmission is performed through the BLE 

NRF51822 chip, which exchanges data with 

the HM-11 BLE module mounted on the 

bottom side of the prosthesis driving/control 

unit. The MYO armband has 8 separate 

electromyography (EMG) sensors, which are 

used to read the muscles and figure out what 

the limb is doing at that moment. This wrist 

strap can also show the orientation of the arm 

in 3-dimensional space. The orientation data 

from the wristband is transmitted to the 

computer via wireless communication 

(Bluetooth). After the data is processed with 

the software prepared in Python programming 

language, it is sent to the computer in real-time 

via TCP / IP communication (Erin and Boru, 

2018). The EMG data is 200Hz, while the IMU 

data is 50Hz. Those speeds are constant and 

cannot be changed. And this collection only 

works while working with a single armband. 

Dataset collected by MYO Armband is 

processed and used by Deep Neural Network 

with PCA, Low variance Filter, Data 

Augmentation, Nonlinear Convolution Layers, 

Data Augmentation, Ensembling, Bagging, 

Batch Normalization, SGD, Adagrad, 

RMSprop, Adam and Particle Swarm 

optimization. The main idea is to classify these 

data properly and prepare the prediction 

models based on this accurate classification. 

Since there are 8 sensors, there are 8 fields in 

the data showing as emg1, emg2, emg3, emg4, 

emg5, emg6, emg7, and emg8. These fields 

can be seen from the sample dataset given in 

Figure 2. You can see the device and a little bit 

of data distribution from the device in the 

picture Figure 1 and the data distribution from 

the graphical Figure 7 below. From the sample 

row of the dataset, as we can see in Figure 7, 8 

different sensors have different values 

according to the movement of the arm between 

the timestamp of start and the end. These 

sensor values have a minimum value of -128 

and a maximum value of 127. 
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Figure 1. MYO Device (Bernhardt, 2015) 

 

2.1. Used techniques 

2.1.1. Principal component analysis 

Principal component analysis (PCA) is a 

statistical procedure that uses an orthogonal 

transformation to transform the observation set 

of interrelated variables into values of linearly 

unrelated variables called principal 

components. The number of major 

components is less than or equal to the number 

of original variables or observations. This 

transformation is defined perpendicular to the 

previous components such that the first 

principal component has the largest possible 

variance, and the resulting components all 

have the highest possible variance under 

constraint. The resulting vectors are a set of 

unrelated orthogonal principal components. 

PCA is sensitive to the relative scaling of the 

original variables. Analysts often use PCA as a 

tool for data analysis and building predictive 

models. It is often used to visualize genetic 

distance and the relationship between 

populations. PCA can be done by eigenvalue 

decomposition of a data matrix, a data 

covariance matrix, or singular value 

decomposition after the mean average of the 

data matrix for each feature. Results of a PCA 

are often discussed in terms of factor scores 

and component scores called loading. PCA is 

the simplest of true eigenvector-based 

multivariate analysis. It is often thought that 

their work reveals the internal structure of the 

data in a way that best explains the variance in 

the data. If a multivariate data set is visualized 

as a set of coordinates in a high dimensional 

data field, the PCA can present a sub-

dimensional picture of this object, a projection 

from the most informative point of view. This 

is done by using only the first few basic 

components, thus reducing the dimensionality 

of the converted data. 

2.1.2. Low variance filter 

The Low Variance Filter node calculates 

each column variance and removes those 

columns with variance values below a 

specified threshold. 

2.1.3. High correlation filter 

This technique establishes the specification 

of a description step that will potentially 

remove variables that have large absolute 

correlations with other variables. 

2.1.4. Data augmentation 

Data augmentation is a useful technique that 

is used in almost every cutting-edge machine 

learning model in applications such as image 

and text classification. Heuristic data 

augmentation schemes are often set manually 

by human experts with extensive domain 

knowledge, resulting in inadequate 

augmentation policies. This resulted in new 

algorithms to automate the search process of 

transformation functions, new theoretical 

knowledge that enhances the understanding of 

various enhancement techniques widely used 

in practice, and a new framework for 

harnessing data enhancement to patch a flawed 

model and improve performance on the key 

data subpopulation. 
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2.1.5. Ensemble learning 

Ensemble methods work best when 

algorithms are independent of each other. One 

way to get different classifiers is to train those 

using different algorithms. This increases the 

likelihood of making different types of 

mistakes, which increases the accuracy of the 

group. Ensemble itself is a supervised learning 

algorithm because it can be trained and then 

used to make predictions. Therefore, the 

trained ensemble represents a single 

hypothesis. However, this hypothesis is not 

necessarily included in the hypothesis space of 

the models from which it is constructed. Thus, 

it can be shown that ensembles have more 

flexibility in the functions they can represent. 

Theoretically, this flexibility enables them to 

fabricate education data more than a single 

model. Still, some ensemble techniques 

(especially bagging) tend to mitigate problems 

associated with overfitting training data in 

practice. Empirically, ensembles tend to show 

better results when there is significant 

variation between patterns. Therefore, many 

community methods try to encourage diversity 

among the models they combine. However, it 

has been shown that using a variety of 

powerful learning algorithms is more effective 

than using techniques that try to simplify 

models to encourage diversity. 

2.1.6. Bagging (variance improving)  

Bagging is a technique that does boot 

clustering. One way to reduce the variance of 

an estimate is to average multiple guesses. For 

example, we can train M different trees on 

different subsets of data (randomly selected by 

replacement) and compute the ensemble. 

Bagging uses boot sampling to obtain subsets 

of data to train basic students. It uses the voting 

for bagging, classification, and the average for 

regression, to gather the outputs of the core 

learners. 

Given a training set D= {(x1, y1), . . . (xn, 

yn)}  

Sample T sets of elements from D (with 

replacement) D1, D2, . . . DT→T quasi replica 

training sets. 

train a machine on each Di,i= 1, ..., T and 

obtain a sequence of T outputs f1(x), . . . fT(x). 

The final aggregate classifier can be 

For Regression:  

 

 𝑓(𝑥) = ∑𝑇
𝑖=1 𝑓𝑖(𝑥)                               (1) 

the average of fi for i= 1, ..., T; 

For Classification 

  𝑓(𝑥) = 𝑠𝑖𝑔𝑛(∑𝑇
𝑖=1 𝑓𝑖(𝑥))                  (2) 

2.2. Optimization algorithms   

In deep learning applications, the absolute 

minimum value of the error function must be 

found for the learning process to result 

healthily. This process is carried out using 

optimization methods. Optimization is the 

method used to make the difference between 

the output value produced by the network and 

the actual value, the error to the smallest. One 

of the most used methods for optimizing 

artificial neural networks is gradient descent. 

There are three gradient descent methods 

(Mini-Batch Gradient Descent, Stochastic 

Gradient Descent, and Batch Gradient 

Descent) depending on the size of the data set 

used in a single iteration. Various algorithms 

(Rmsprop, Adagrad, Adam, etc.) are based on 

the gradient descent method (Kurt, 2018). 

While training data, calibrating the learning 

coefficient is critical in terms of optimization. 

However, it is not possible to fully adjust the 

learning coefficient in the model with every 

algorithm. Various gradient methods have 

been proposed to solve this problem (Li, 2017). 

2.2.1. Adagrad 

Adagrad makes different updates for each 

parameter by using t different learning 

coefficients for each step. Thus, it eliminates 

the need to adjust the learning coefficient 

manually. In Adagrad, each parameter has its 
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learning speed. The learning coefficient 

becomes excessively smaller because of the 

growth of the expression in which the learning 

coefficient value is divided in the update 

process during training (Çarkacı, 2018). 

Adagrad uses a different learning rate for every 

parameter θi at every time step t; first, it is 

being shown that Adagrad's per-parameter 

update, which then is vectorized. For brevity, 

gt has been used to denote the gradient at time 

step t. gt, i is then the partial derivative of the 

objective function w.r.t. to the parameter θi at 

time step t: 

 

gt,i=∇θJ(θt,i).                                              (3) 

 

The SGD update for every parameter θi at 

each time step t then becomes: 

 

 θt+1,i=θt,i−η⋅gt,i.                                        (4) 

 

In its update rule, Adagrad modifies the 

general learning rate η at each time step t for 

every parameter θi based on the past gradients 

that have been computed for θi: 

θt+1,i=θt,i−η / √Gt,ii+ϵ⋅gt,i.                                       (5)      

 

Gt∈Rd×d here is a diagonal matrix where 

each diagonal element i, i is the sum of the 

squares of the gradients w.r.t. θi up to time step 

t, while ϵ is a smoothing term that avoids 

division by zero (usually on the order of 1e−8). 

As Gt contains the sum of the squares of the 

past gradients w.r.t. to all parameters θ along 

its diagonal, it can now be vectorized for the 

implementation by performing a matrix-vector 

product ⊙ between Gt and gt: 

 

θt+1=θt−η / √Gt+ϵ⊙gt.                            (6) 

 

2.2.2. Rmsprop 

Rmsprop has been developed as a solution 

to the problem of over-minimizing the learning 

coefficient in the Adagrad algorithm. Instead 

of using all the values obtained from the 

squares of all past slopes in Adagrad, it 

restricts the value amount to a certain frame 

size (Kurt,2018; Ruder,2016). 

 

E[g2]t=0.9E[g2]t−1+0.1g2
tθt+1=θt−η / √E[g2]t+ϵgt                                      (7) 

 

Rmsprop is similar to AdaGrad, and the 

difference is that the denominator is also 

decayed. 

2.2.3. Adam optimization 

ADAM, Adaptive Moment Estimation, is a 

more widely used method that adds 

momentum to the RMSprop method. 

Momentum updating is done with the 

exponential moving average, and when dealing 

with β, it is not necessary to change the 

learning rate. Like in RMSprop, here, the 

exponential moving average of the gradient 

square is taken. At the beginning of the training 

process of neural networks, SGD often goes in 

the wrong direction, while RMSprop is 

heading in the right direction. However, 

RMSprop is also affected by a noise like 

classical SGD, i.e. jumps around optimum 

when it finds a local minimum, leading to 

critical consequences. Just as we add 

momentum to the SGD, the same improvement 

is achieved with ADAM. The ADAM 

Algorithm was also generally regarded as quite 

robust in choosing hyperparameters (Studer et 

al.,1984). 

 

mt=β1mt−1+(1−β1)gt                               (8) 

vt=β2vt−1+(1−β2)gt
2                                (9) 

 

This update rule is like the RMSProp. The 

difference is that the cumulative history of 

gradients is being looked at as well(m_t). 

ADAM is required to train some networks 

while using language models. SGD or ADAM 

with momentum is generally preferred to 

optimize neural networks. However, ADAM's 

theory in publications is not well understood, 

and it has some drawbacks. In elementary test 

problems, the method does not converge. It is 

known to give generalization errors. If the 

neural network is trained to provide zero loss 

in data used for training, it will not lose zero in 

other data points it has never seen before. It is 
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quite common to get worse generalization 

errors, especially when using SGD for image 

problems. For example, ADAM or factors in 

its structure may include finding the closest 

local minimum, i.e. being less noisy. While we 

need 3 buffers in ADAM, SGD requires 2 

buffers. It is not very important unless we train 

a model that is a few gigabytes in size, but in 

such a case, it may not fit into memory. Instead 

of 1, 2 momentum parameters should be set. In 

this method, in addition to using the 

exponentially weighted averages (𝐴𝑡) of the 

squares of past slopes, as is done in Rmsprop, 

it also stores the momentum changes (𝑚𝑡) in 

the cache. So, it combines Rmsprop and 

momentum. The default values are 0.9 for β1; 

It is stated as 0.999 for β2 and 108 for epsilon 

(Li, 2017; Çarkacı, 2018). 

2.2.4. Stochastic gradient descent 

SGD is an iterative optimization technique 

that uses mini data stacks to generate the 

expectation of the gradient rather than the full 

gradient using all available data. A large 

dataset containing randomly sampled samples 

probably contains redundant data. The larger 

the batch size, the more likely the surplus 

becomes. Some redundancies can be useful for 

smoothing noisy gradients, but massive 

batches tend to be of much less predictive 

value than large batches (Song et al., 2013). 

What if we could get the correct average 

gradient for much less computation. We can 

predict a larger average from a much smaller 

average by picking random samples from our 

dataset. Stochastic gradient descent (SGD) 

takes this idea to the extreme - using only one 

instance (batch size 1) for each iteration. Given 

enough iterations, SGD works but is too noisy. 

Stochastic means that a sample containing 

each batch is randomly selected. SGD 

performs a parameter update for each training 

example labeled x(i) and y(i): 

 

 θ=θ−η⋅∇θJ(θ;x(i);y(i)).                          (10) 

  

In the SGD algorithm, the calculation is 

made over a training sample instead of all 

training data. In this way, possible memory 

deficiency problems are prevented (Kurt, 

2018). 

2.2.5. Particle swarm optimization 

In the search field, particles are presented as 

potential solutions, and the fitness function is 

proposed as the basic mechanism for driving 

particle movements. The PSO, which includes 

the following people who are part of a 

community, has an idea that is part of a "field 

of belief" (search space) shared by neighboring 

individuals. Individuals can change this "state 

of vision" based on three factors: 

environmental knowledge; the individual's 

previous state history, and previous situations 

of the individual's neighborhood. Considering 

the rules of interaction, PSO, individuals in 

society adapt their belief schemes to more 

successful social networks. The rules of one-

dimensional particle motion are shown in 

equations as follows: 

 

   vi
t+1=w * vi

t+ d1 *ε1* (pbest− xi
t) + d2* ε2 *(gbest− xi

t)                   (11) 

 

    xi
t+1=xi

t+vi
t+1                                                                                (12) 

 

Where the local best configuration (pbest), 

global best (gbest), new velocities (vit+1), and 

positions (xit+1) where xit and vit are the 

current position and velocity. ε1 and ε2 are 

chosen randomly in between (0,1). The 

tendency of a particle to remain in its current 

position is called inertia coefficient denoted by 

w, d1, and d2 (which can be modified as per 

requirement), which are referred to as the 

individual coefficient of acceleration and 

global coefficient of acceleration, respectively. 

 

2.3. Deep neural network 

The deep neural network algorithms used in 

the study are multi-layered versions of 

artificial neural networks that are inspired by 

the information processing method of the 

human brain. Since the single-layer 

perceptron, which was first developed and 
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evaluated as the most primitive artificial neural 

network, is not sufficient in solving nonlinear 

problems, a multi-layer perceptron has been 

developed (Fernandez et al., 2006). Most 

machine learning and deep learning algorithms 

use the idea of gradient descent. And that is 

based on the Newton algorithm that is about 

finding the roots of a 2d function. To achieve 

that, a point is randomly picked and slide to the 

left or right along the x-axis, based on the 

positive or negative value of the derivative of 

the slope of this function at the chosen point 

until the value of the y axis function comes to 

zero. The same idea is used in gradient descent, 

where we move or descend along a given path 

in multidimensional weight space. The cost 

function continues to decrease and stops when 

the error rate stops decreasing. Newton's 

method tends to get stuck at the local minimum 

if the derivative of the function at the current 

point is zero. Similarly, this risk exists when 

gradient descent is used on a non-convex 

function. The effect is multidimensional (each 

dimension represents a weight variable) and is 

amplified in the multilayer environment of 

DNN, resulting in a non-optimal weight set. In 

standard SGD, the learning rate is used as a 

constant multiplier of the gradient to calculate 

step size or update weight. This can cause the 

update to exceed a potential minimum if the 

slope is too steep or delay convergence if the 

slope is noisy. Using the concept of 

momentum in physics, the momentum 

algorithm presents a velocity variable v that is 

structured as an exponentially decreasing mean 

of the gradient. This helps prevent costly 

landings in the wrong direction. In the equation 

below, a ↋ [0; 1) is the momentum parameter, 

and ε is the learning rate. The multi-layer 

perceptron contains three layers which is the 

input layer, hidden layer(s), and an output 

layer. Unlike the single-layer sensor, nonlinear 

classification can be made. Depending on the 

nature of the problem solved, the number of 

hidden layers and the number of neurons in 

these layers may change. To create a good 

generalization in the modeling process of 

architecture, the input data set is divided into 

two or three separate parts (Fukuda et al., 

1998; Cichosz, 2015, Matt et al., 2015). In 

deep neural network algorithms, the entire data 

set is generally divided into two datasets called 

training data set and test data set (testing). The 

role of the training data set is to calculate the 

estimates of the weights in the neural network, 

and the role of the test data set is to test the 

accuracy of the obtained weight values with 

data hidden from the model (Priddy and Keller, 

2005; Okut, 2018) works with. In the first stage 

of the backpropagation algorithm, variables 

are presented to the training network. By 

assigning a weight value for each neuron of 

each variable, after the values are multiplied by 

the weights and summed, it is sent to all 

neurons in the next layer by an activation 

function in the neurons in the hidden layer by 

adding the bias value (Moradi et al., 2008; 

Song et al., 2013). These values constitute the 

input values for the neurons in the output layer. 

After similar operations are performed in the 

output layer, an output value is obtained, the 

output and the actual value are compared, and 

the error value is obtained. In the second stage, 

errors obtained from the output layer are 

propagated to other layers in a backward 

direction. These errors are used to calculate the 

slope of the loss function relative to the 

weights in the network. Them, to update the 

weights for the idea of minimizing the loss 

function, optimization methods are used (Okut 

et al., 2011; Li, 2017).  In this process, the 

partial derivative of the error according to the 

weights is made by using the chain rule in the 

derivative. The incoming information x = [x1, 

x2, . . ., xM].  

The weights w = [w1, w2, . . ., wM] at the 

incoming connections and the bias b for the 

neuron, both of which constitute the 

parameters of the neuron. An intermediate 

processing step within the body of the neuron 

is implemented simply as a linear combination 

of the incoming data x using the weights w and 

bias b. The activation function σ( · ) of the 

neuron, which applies a nonlinear 

transformation to the intermediate result z, thus 

creating the neuron's output information, y,. 

Therefore, the output of the ANN model can be 

viewed as 

y = σ (wtx + b). 
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Figure 2. Single ANN Model (Gürbüz, 2020) 

 

Figure 2 shows a representation of an 

artificial neuron, pointing out its following 

main components. Some highly used 

activation functions, namely sigmoid, tangent 

hyperbolic, and rectified linear unit, are shown 

in Figure 5, which also provides their 

definitions. The weights and bias of each 

neuron are parameters to learn to approach 

optimal matching between input and output 

data samples. Nonlinear activation functions 

are particularly important to allow more 

complex nonlinear mappings to be represented 

by a network of simple neurons. 

 

 
 

Figure 3. Three of the most commonly used activation functions: (a) sigmoid σ(z) = 1 1+e−z, (b) tangent hyperbolic 

σ(z) = tanh (z), and (c) rectified linear unit (ReLU) σ(z) = max (0, z) (Gürbüz, 2020) 

 

An ANN consists of interconnections of 

neurons in a layered structure. The first layer 

of neurons takes data samples as input, while 

the last layer produces output samples, whether 

classification or regression results. There are 

one or more hidden layers that progressively 

transform the first layer neuron activations into 

final output samples. Figure 4 shows an ANN 

example with two hidden layers. 
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Figure 4. An ANN structure with two hidden layers 

 

As the number of hidden layers increases, 

the ANN structure gets deeper and turns into a 

DNN. Although ANNs with many hidden 

layers are called DNN in the literature, deep 

learning and DNN structures are mostly related 

to the ability to learn features from raw sensor 

data and the models and structures that 

facilitate this ability. 

 

2.4. Proposed work 

It is aimed to use optimization algorithms to 

the fullest to accurately predict EMG signals 

with the proposed deep learning model. In this 

section, the processes in the proposed model 

will be explained in detail. The pseudocode of 

the deep learning framework used in the study 

is as shown below in Figure 5: 

 

 

Figure 5. Pseudo-code of the deep learning framework 

 

The parameters that it has been used are 

60% training 20% test, 20% validation, 100 

epochs, 0.2 learning rate, Sigmoid activation 

function, low signal data as the input value, 

and to predict the correct signal data as the 

output value. Multiple approaches with many 

epochs and learning rates have been tried to 

find the optimized parameters. The result 

obtained from the proposed model is the 

calculated mean of those many tries; therefore, 
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it can be seen that this result was not for one 

time and was calculated mathematically to 

show its robustness. 

Step 1. To prepare for better results, 

preprocessing was done before the model. At 

the start, Min-Max feature scaling was applied 

because this step is also a requirement for 

standardization. So, the data of EMG signals 

were normalized with the formula below.  

 

Xscaled = (x – min(x)) / (max(x) – min(x)) 

 

X represents a single feature/variable 

vector. 

Since there are no missing values from the 

dataset that we have taken from the MYO 

Armband device, no techniques are needed to 

fill them. 

Step 2. When the feature scaling is over, the 

following techniques were applied to enhance 

the results further. These techniques are PCA, 

low variance filter, high correlation filter, data 

augmentation, ensemble learning, and 

bagging.  

Step 3. In this step, data is divided into 

training, testing, and validation. This process is 

not random, as the data is handpicked to avoid 

the randomness of the results. 

Step 4. To see the prediction values from the 

Deep Neural Network, a standard model was 

applied without any optimization model or 

preprocessing techniques. It can be seen the 

accuracy result of the current data, with the 

correct picking of weights (random at first) and 

the number of hidden layers (in our case, it 

seems 8) and using the different activation 

functions (in our case, sigmoid worked the 

best) and the modifying the learning rates and 

the weights with the help of backpropagation 

algorithm to reach the upper numbers of the 

prediction. 

Step 5. After the model gives a prediction 

result, it is time to use optimization algorithms 

and preprocessing techniques to increase the 

prediction value of the model further. This is 

the step that took most of the time in the 

research. First, it started with one optimization 

algorithm only, and that is Adam Optimization 

because it has been known before that Adam 

Optimization works well with Neural 

Networks. After that, many Optimization 

algorithms were applied single, and then 

combinations of these optimization algorithms 

were tested to reach the best result; this step 

took 916 tries. And the best-combined result in 

the model with the dataset comes from the 

combination of Adagrad, RMSProp, Adam 

Optimization, Stochastic Gradient Descent, 

and PSO with Deep Neural Networks.  

 

3. Findings and Discussion 

 

The Deep Neural Network and all other 

techniques were implemented via Python, and 

the results are shown in Table 1 and Table 2. 

Table 1 shows the results of the Deep Neural 

Network, without any of the preprocessing and 

optimization methods applied. It can be seen 

from Table 1 that the raw data results are not 

considered high enough to be useful. Table 2 

shows the results of the Deep Neural Network 

with PCA, Low variance Filter, Data 

Augmentation, Nonlinear Convolution Layers, 

Data Augmentation, Ensembling, Bagging, 

Batch Normalization, SGD, Adagrad, 

RMSprop, Adam and Particle Swarm 

optimization. It can be seen from Table 2 that 

with more Synthetic data, and more specified 

hidden layers, with the help of preprocessing 

optimization methods, results are reached a 

point where they could be seen as reasonable. 

Future work can test and study more 

classification techniques, optimization 

methods, and different movements. Also, more 

feature extraction methods and other machine 

learning algorithms can be chosen to improve 

the results, or these methods can be used in a 

situation other than EMG signals.  
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Table 1. Model results before proposed method (DNN only) 

 

Table 2. Model combination results 

Model Accuracy F Measure Precision Recall 

Deep Neural Network 

0.74 0.73 0.76 0.71 

Standard Deviation Standard Deviation Standard Deviation Standard Deviation 

0.002 0.005 0.009 0.003 

Deep Neural Network 

 + Preprocessing 

0.77 0.76 0.79 0.74 

Standard Deviation Standard Deviation Standard Deviation Standard Deviation 

0.004 0.007 0.007 0.005 

Deep Neural Network 
 + Preprocessing 

 + Adam 

0.82 0.81 0.84 0.76 

Standard Deviation Standard Deviation Standard Deviation Standard Deviation 

0.004 0.008 0.007 0.006 

Deep Neural Network 

 + Preprocessing 

 + SGD 

0.8 0.79 0.77 0.73 

Standard Deviation Standard Deviation Standard Deviation Standard Deviation 

0.003 0.007 0.009 0.006 

Deep Neural Network 
 + Preprocessing 

 + SGD + PSO 

0.84 0.83 0.82 0.78 

Standard Deviation Standard Deviation Standard Deviation Standard Deviation 

0.004 0.003 0.008 0.005 

Deep Neural Network (With 

Synthetic Data) 

 + Preprocessing 

 + SGD + Adam 

0.87 0.84 0.86 0.81 

Standard Deviation Standard Deviation Standard Deviation Standard Deviation 

0.004 0.008 0.004 0.005 

Deep Neural Network (With 

Synthetic Data) 

 + Preprocessing 

 + SGD + RMSProp + PSO 

0.91 0.9 0.91 0.88 

Standard Deviation Standard Deviation Standard Deviation Standard Deviation 

0.004 0.007 0.009 0.006 

Model Accuracy F Measure Precision Recall 

Deep Neural Network 

0.74 0.73 0.76 0.71 

Standard Deviation Standard Deviation Standard Deviation Standard Deviation 

0.002 0.005 0.009 0.003 
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From Figure 7, you can see the differences 

between the normal model and the proposed 

model graphically. 

Metric based results are accuracy, 

Accuracy defines the distance between the 

actual value and the measured value (Sammut 

and Webb, 2015). 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
(𝑇𝑃 +  𝑇𝑁)

(𝑇𝑃 +  𝑇𝑁 +  𝐹𝑃 +  𝐹𝑁)
 

 

While 

True Positive (TP): is where the signal is 

strong, and our model correctly predicts a 

strong signal  

True Negative (TN) is where the signal is 

weak, and our model correctly predicts a weak 

signal 

False Positive (FP): is where the signal is 

strong, and our model predicts a weak signal  

False Negative (FN): is where the signal is 

weak, and our model predicts a strong signal 

Precision, 

Precision defines the distance between the 

measured values (Sammut and Webb, 2015). 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
(𝑇𝑃)

(𝑇𝑃 +  𝐹𝑃)
 

 

Recall, 

𝑅𝑒𝑐𝑎𝑙𝑙 =
(𝑇𝑃)

(𝑇𝑃 +  𝐹𝑁)
 

 

and F Measure. 

𝐹 𝑀𝑒𝑎𝑠𝑢𝑟𝑒 =
(2 ∗ 𝑇𝑃)

(2 ∗ 𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁)
 

 

It can be seen from Table 1 that with the 

dataset of 152,842 rows, our Deep Neural 

Network Model has shown 0,74 Accuracy, 

0,73 F Measure, 0,76 Precision and 0,71 Recall 

results before techniques (with 152,842 rows) 

In Table 2, results of some of the 

combination that has been made can be seen. 

Including parameter tuning, preprocessing 

steps, optimization algorithm applications, and 

everything that is included in this search took 

a total of 916 tries. With the creation of 

synthetic data for further training, the dataset 

reached 24,728,319 rows. The best result, with 

the combination of the selected Optimization 

Algorithms, our model shows 0,93 Accuracy, 

0,96 F Measure, 0,98 Precision, and 0,92 

Recall. The significant improvement of the 

results within the model can be seen in Table 

3. 

 

Table 3. Model results after the proposed method (AdaGrad + RMSProp, adam, stochastic gradient descent 

+ PSO + DNN) 

Model Accuracy F Measure Precision Recall 

Deep Neural Network (With 

Synthetic Data) + Adam + 

Adagrad + RMSProp + SGD + 

PSO 

0.93 0.96 0.98 0.92 

Standard Deviation Standard Deviation Standard Deviation Standard Deviation 

0.005 0.017 0.009 0.01 
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From Figure 6, it can be seen that, between 

the proposed model and the raw results, there 

is a big difference. It shows that with more 

data, preprocessing and optimization 

algorithm combinations make a big difference 

in the prediction result of the model. 

 

 
 

Figure 6. Calculated accuracy, f-measure, precision and recall 

 

 

Figure 7. Sample from the dataset numeric 
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Figure 8. Data Distribution of 100 rows from dataset graphical 

 

4. Conclusion 

 

This study demonstrates that integrating 

deep neural networks with advanced 

preprocessing and optimization techniques 

significantly enhances the prediction of 

electromyography (EMG) signals. By 

employing methods such as Principal 

Component Analysis, low variance and high 

correlation filters, data augmentation, and 

ensemble approaches, combined with 

optimization algorithms—including Adagrad, 

RMSprop, Adam, Stochastic Gradient 

Descent, and Particle Swarm Optimization—

we achieved substantial improvements in 

performance metrics. In particular, the 

precision of the model improved from 0.76 

without optimization to approximately 0.98 

after applying the proposed methodology. 

The results indicate that robust EMG signal 

processing can be achieved in near real-time, 

potentially reducing the impact of signal 

degradation on the control of prosthetic 

devices. This advancement not only 

contributes to the field of prosthetic control but 

also opens avenues for further research on real-

life implementations using compact hardware 

platforms such as Arduino or Raspberry Pi. 

Future work will explore alternative 

classification techniques, additional 

optimization methods, and further refinements 

in feature extraction to enhance model 

performance. The promising results of this 

study underscore the potential for machine 

learning applications to improve the quality of 

life for individuals with amputations by 

ensuring more reliable and accurate prosthetic 

control. 
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