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Abstract 

Soil pH and electrical conductivity (EC) are critical soil properties influencing agricultural productivity and 

environmental sustainability. This study evaluates the performance of stacked machine learning models in 

predicting and mapping soil pH and EC values. Base models such as Ordinary Kriging (OK), Universal Kriging 

(UK), and Disjunctive Kriging (DK) were employed, and their outputs were integrated into a Multilayer Perceptron 

(MLP) neural network meta-model. The results reveal the superior performance of the MLP meta-model across all 

metrics. For instance, in predicting pH, the MLP model achieved an RMSE of 0.028, an MAE of 0.020, and an 𝑅2 

of 0.858 on the training dataset. For EC predictions, the MLP model outperformed others on the test dataset, with 

an RMSE of 0.039, an MAE of 0.028, and an 𝑅2 of 0.900. In contrast, the UK and DK methods exhibited lower 

accuracy, particularly on test datasets. This study shows the advantage of modern machine learning algorithms in 

modeling nonlinear spatial relationships and their significant potential in digital soil mapping. The findings 

demonstrate the applicability of these approaches in enhancing agricultural productivity and supporting sustainable 

soil management practices. 
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1. Introduction 

Soil pH is a key factor that indicates 

whether soil is acidic or alkaline and plays 

a crucial role in shaping various soil 

properties and processes. Plants have 

specific pH preferences, and maintaining 

the appropriate pH range is essential for 

ensuring nutrient availability to support 

healthy plant growth (Neina et al., 2019). 

Soil acidity poses a global challenge, 

arising from both natural processes and 

human activities. Naturally, it can result 

from the leaching of base cations such as 

calcium, magnesium, and potassium in 

areas with high rainfall, leaving behind 

hydrogen and aluminum ions. Other natural 

contributors include the weathering of 

minerals, aluminum hydrolysis, plant 

uptake of cations over anions, and the 

oxidation of organic matter and sulfur 

minerals. Human activities also contribute 

significantly to soil acidification, 

particularly through the burning of fossil 

fuels that release sulfur and nitrogen gases, 

leading to acid rain. Furthermore, the 

excessive use of ammonium-based 

fertilizers intensifies the problem (Hue, 

2022).  

Soil salinity is a significant global 

concern, affecting more than 900 million 

hectares of land (Hopmans et al., 2021). 

This issue is especially harmful in semi-arid 

and arid regions, where it degrades soil and 

water quality, hampers seed germination, 

reduces agricultural productivity, and 

accelerates land degradation (Singh, 2022). 

In these areas, conditions such as high rates 

of evapotranspiration, limited precipitation, 

and specific soil characteristics promote the 

accumulation of salts in the soil. The 

concentration of salts, particularly in the 

upper soil layers, modifies soil properties 

and impairs its overall functionality 

(Butcher et al., 2016).  

Soil pH is an important property that 

directly affects plant growth and 

development, making its assessment and 

management critical for agricultural 

productivity and environmental 

sustainability (Lu et al., 2023). By 

monitoring soil pH, farmers can make 

strategic decisions regarding fertilization 

and soil management, leading to healthier 

crops and higher yields (Singh, 2022). 

Extremely acidic or alkaline soils can 

hinder nutrient availability, reducing plant 

productivity, while soil pH also influences 

microbial activity, a key factor in 

maintaining soil health (Suarez, 2006).   

Under natural conditions, soil pH 

changes occur gradually, with spatial 

variability driven by factors such as 

topography, climate, parent material, 

vegetation, and human activities (Cannone 

et al., 2021; Zhao et al., 2024). In contrast, 

agricultural practices can result in rapid and 

substantial shifts in soil pH. Understanding 

these temporal and spatial variations is 

essential for sustainable agricultural 

practices. Tools such as Geographic 

Information Systems and digital soil 

mapping provide effective means for 

analyzing and mapping the spatial 

variability of soil pH (Filippi et al., 2018). 

Estimating and mapping soil pH and EC 

over large areas is essential for efficient 

resource management and enhancing crop 

productivity. However, performing these 

tasks using traditional methods is both time-

consuming and costly. Geostatistical 

methods, particularly kriging interpolation 

techniques, have long been employed for 

spatial modeling of soil properties as they 

enable the prediction of soil parameters 

across extensive landscapes (Filippi et al., 

2018; Lu et al., 2023; Zhao et al., 2024). 

In recent years, modern interpolation 

techniques such as High Accuracy Surface 

Modeling (HASM) have demonstrated 

significant advantages in spatial predictions 

of variables like soil pH. Shi et al. (2009) 

reported that HASM achieved higher 

accuracy, with lower MAE (0.16) and 

RMSE (0.22) values, compared to 

traditional methods such as kriging, IDW, 

and splines. Nonetheless, these methods 

may encounter limitations in capturing 

complex spatial patterns and minimizing 

prediction errors. 
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Recently, machine learning algorithms 

have emerged as powerful tools for 

improving prediction accuracy in 

environmental studies (Günal et al., 2021: 

Abakay and Günal, 2023; Durmaz et al., 

2024). For example, the Random Forest 

algorithm has been reported to deliver 

superior performance in predicting soil pH 

and EC (Lu et al., 2023; Zhao et al., 2024). 

The careful selection of machine learning 

algorithms significantly impacts model 

performance. In a study by Khaledian and 

Miller (2020), various algorithms were 

compared in terms of hyperparameter 

requirements, dataset size, and model 

interpretability. The Cubist and Random 

Forest algorithms showed strong 

performance, particularly with smaller 

datasets. 

Ensemble methods, especially stacked 

machine learning models, provide a 

significant advantage by combining 

multiple base models to harness their 

individual strengths. The integration of 

geostatistical techniques with artificial 

neural network-based meta-models 

improves the reliability of spatial 

predictions by effectively addressing both 

systematic and random errors. 

This study investigates the effectiveness 

of stacked machine learning models in 

predicting and mapping soil pH and EC. 

Khaledian and Miller (2020) evaluated 

machine learning algorithms based on five 

critical criteria: hyperparameter count, 

sample size, variable selection, training 

time, and model interpretability. Their 

findings highlighted the superior accuracy 

of Cubist and Random Forest algorithms, 

even when applied to small datasets. These 

results served as a foundation for designing 

the stacked models used in this research. 

The proposed methodology utilizes 

Ordinary Kriging (OK), Universal Kriging 

(UK), and Disjunctive Kriging (DK) as base 

models, which are then integrated with a 

Multilayer Perceptron (MLP) neural 

network serving as the meta-model. This 

approach introduces an innovative 

framework for spatial modeling of soil 

properties, aiming to advance precision 

agriculture practices. 

2. Materials and Methods 

2.1. Study area 

The study area spans a vast region within 

Şanlıurfa province, which is known for its 

prominent pistachio cultivation. Located in 

southeastern Turkey, Şanlıurfa has a rich 

geological background, with much of the 

area composed of limestone, basalt, and 

alluvial rocks from the Cenozoic era. 

Limestone formations are especially 

significant in the province's geology, found 

primarily in the Fatik Plateau to the north 

and west and the Tektek Mountains to the 

east. The Fatik Plateau contains extensive 

Eocene limestone deposits, often white or 

yellow in color and highly calcified, while 

the Tektek Mountains feature younger 

limestone deposits from the Oligocene-

Miocene epochs, generally yellow or 

brown, with less karstification (Özcan, 

1974). 

On the geological map of Şanlıurfa, 

green areas indicate Cretaceous-Paleocene 

clastic and carbonate rocks, orange areas 

represent Eocene limestones, and yellow 

areas correspond to Miocene limestones. 

These limestones are part of the Midyat 

Group, which includes formations from the 

Eocene, Oligocene, and Early Miocene 

periods. Under the region's arid climate, 

these limestone formations support 

xerophytic vegetation, such as maquis and 

steppe communities. 

Şanlıurfa, located in southeastern 

Turkey, is where the Mediterranean and 

continental climates meet, resulting in a 

semi-arid Mediterranean climate. 

Precipitation is concentrated in the winter 

months, when temperatures are more 

moderate. The long-term average annual 

rainfall is 459.3 mm, which is below the 

Mediterranean regional average. Most 

rainfall occurs between November and 

March, while there is a significant reduction 

in rainfall during July and August. Summers 

are hot and dry, with an average annual 

temperature of 18.5°C. The coldest month 

is January, with an average temperature of 
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5.6 °C, while July is the hottest month, with 

an average temperature of 32 °C. Winters 

are generally mild, with January being the 

coldest month, though temperatures rarely 

drop below freezing. Snowfall is typically 

observed in December, January, and 

February, but the snow cover is usually 

brief. The climate of Şanlıurfa significantly 

influences its natural vegetation and 

agricultural practices. Due to the hot, dry 

summers, the region's vegetation mainly 

consists of drought-resistant maquis and 

steppe plants. Agriculture is predominantly 

focused on irrigated farming during the 

winter months (MGM, 2024). 

 

 

 

2.2. Soil sampling and laboratory 

analysis 

Soil samples were collected from 

disturbed soils at a depth of 0-20 cm from 

104 points, representing three primary land 

uses: dry farming fields, pasture areas, and 

pistachio orchards. These points were 

selected from homogeneous units with 

areas ≥1 km² (Figure 1). Among the 

samples, 13 were from fields that had been 

used for barley, wheat, or other crops like 

lentils and alfalfa but were not planted at the 

time of sampling. Additionally, 65 samples 

were taken from pistachio orchards of 

various ages, 14 from pasture areas, 8 from 

cotton fields, and 4 from olive orchards. The 

coordinates of each sampling point were 

recorded in the field using a handheld GPS 

device. 

 

 
Figure 1. The locations of the soil samples within the study area and their distribution in the test and training 

datasets of the models 

 

After air-drying, the soil samples were 

sieved through a 2 mm mesh and prepared 

for further analysis. Electrical conductivity 

(EC) and pH were measured in a 1:2.5 soil-

water suspension using an EC-pH meter, 

following the method outlined by the US 

Salinity Lab Staff (1954). 

2.3. Modelling approach 

The Stacked Machine Learning Model, 

also known as stacking or stacked 

generalization, is an ensemble learning 

technique that integrates multiple predictive 

models. The fundamental concept behind 

stacking is to capitalize on the strengths of 

various base models (Level 0: Ordinary 

Kriging, Universal Kriging, and Disjunctive 

Kriging) and use a meta-model (Level 1: 

Multilayer Perceptron Neural Network, 

MLP) to optimally combine their 

predictions. This two-level approach 
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enables the meta-learner to correct biases in 

the base models and reduce both systematic 

and random errors, thereby enhancing 

prediction accuracy (Ma et al., 2018; Wang, 

2018). 

 

2.3.1. Base models (Level 0) 

Ordinary Kriging (OK) is a geostatistical 

interpolation method used with spatial data 

and is defined as the Best Linear Unbiased 

Estimator (BLUE). This method provides a 

prediction that is "optimal" (minimizing 

error variance), "linear" (using a weighted 

linear combination of existing data), and 

"unbiased" (with an error mean equal to 

zero). The fundamental principle of 

Ordinary Kriging is to predict the value of a 

regionalized variable, 𝑍(𝑠0), at a location to 

be estimated, based on the surrounding 

available data. (Equation 1) (Mesić Kiš, 

2016; Webster and Oliver, 2007): 

 

𝑍(𝑠0) =  ∑ 𝜆𝑖𝑍(𝑠𝑖)
𝑛
{𝑖=1}    (1) 

 

λi: Weight coefficients, 

Z(si): Observations at the existing data points, 

n: The number of data points used. 

These weights are determined to satisfy the conditions of unbiasedness (Equation 2) and 

minimum variance (Equation 3), as outlined below (Journel and Huijbregts, 1978): 

∑ 𝜆𝑖
𝑛
{𝑖=1} =  1     (2) 

𝑚𝑖𝑛 𝑉𝐴𝑅[ 𝑍(𝑠0) − ∑ 𝜆𝑖𝑍(𝑠𝑖)
𝑛
{𝑖=1} ]     (3) 

To determine the weights, the equation in matrix form from Equation 3 is used (Malvić and 

Balić, 2009): 

[
 
 
 
 
γ(𝑠1, 𝑠1) γ(𝑠1, 𝑠2) ⋯ γ(𝑠1, 𝑠𝑛) 1

γ(𝑠2, 𝑠1) γ(𝑠2, 𝑠2) ⋯ γ(𝑠2, 𝑠𝑛) 1
⋮ ⋮ ⋱ ⋮ ⋮

γ(𝑠𝑛, 𝑠1) γ(𝑠𝑛, 𝑠2) ⋯ γ(𝑠𝑛, 𝑠𝑛) 1
1 1 ⋯ 1 0]

 
 
 
 

⋅ [

λ1

λ2

⋮
λ𝑛μ

] = [

γ(𝑠1, 𝑠0)

γ(𝑠2, 𝑠0)
⋮

γ(𝑠𝑛, 𝑠0)1

] (3) 

Where: 

γ(si,sj): represents the semivariogram value between the points 𝑠𝑖  and 𝑠𝑗, 
μ: Lagrange multiplier. 

 

Universal Kriging (UK) is a 

geostatistical method employed for spatial 

data prediction when a significant trend is 

present in the data. It is particularly useful 

when the mean of the variable is not 

constant, meaning the stationarity 

assumption is violated. Universal Kriging 

decomposes the predicted variable into two 

components: a deterministic function 

(μ(x)), which represents the significant 

trend, and a random component (Y(x)), as 

expressed in Equation 4 (Wackernagel, 

2003): 
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𝑍(𝑥) = μ(𝑥) + 𝑌(𝑥) (4) 

Where: 

Z(x): The regionalized variable at location x, 

μ(x): the deterministic trend that varies with spatial location, 

Y(x): the random component, which is considered a stationary process. 

The trend component (μ(x)) is modeled as a polynomial function, which is represented in 

Equation 5. This polynomial function captures the underlying trend in the data, accounting for 

spatial variations that cannot be explained by the random component alone (Kumar, 2007): 

μ(𝑥) = ∑ α𝑙𝑓𝑙(𝑥)𝑘
𝑙=1          (5) 

Where: 

αı: The coefficients to be predicted from 

the data, 

fı(x): the basic function that defines the 

spatial coordinates, 

k: the number of functions used to model the 

trend. 

Disjunctive Kriging (DK) relies on the 

principle of transforming the data into 

standard normal variables using Hermite 

polynomials and then applying the kriging 

method to predict these polynomials. The 

predicted values are subsequently inverse-

transformed to obtain results in the original 

units of the variable (Olıver et al., 1996). 

DK expresses the prediction of a variable 

using the equation provided in Equation 6: 

 

𝑍𝐷𝐾(𝑥) = ∑ ϕ𝑘𝐻𝑘(𝑌(𝑥))∞
𝑘=0        (6) 

ϕ𝑘 = ∫ 𝑍(𝑥)𝐻𝑘(𝑌(𝑥))𝑔(𝑌(𝑥))𝑑𝑌
∞

−∞
      (7) 

 

Where: 

ZDK(x): Estimated value, 

ϕk: Hermite coefficients, 

Hk(Y(x)):The k-th Hermite polynomial of Y(x) 

 

2.3.2. Level 1 

The Multilayer Perceptron Artificial 

Neural Network (MLP-ANN) is a type of 

artificial neural network that consists of an 

input layer, one or more hidden layers, and 

an output layer. It functions through 

supervised learning, where it learns the 

nonlinear relationships between the input 

variables and the target outputs. Each layer 

is made up of nodes (neurons), which are 

processed with weights and biases (Pinkus, 

1999). A multilayer MLP is represented by 

Equation 8 (Haykin, 1999): 
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𝑦(𝑙)̂ = 𝑓(𝑊(𝑙)𝑦(𝑙−1)̂ + 𝑏(𝑙))    (8) 

 

Where;  𝑊(𝑙)𝑣𝑒 𝑏(𝑙), 𝑙 − represents the weight matrix and bias vector of the n n-th layer. 

 

GridSearchCV is a methodical approach 

used for hyperparameter optimization of 

machine learning models, and it was 

applied in this study to enhance the 

performance of the MLP-ANN model. This 

method tests different combinations of 

predefined hyperparameters via a grid 

search and evaluates the accuracy of each 

combination using k-fold cross-validation 

(Kong et al., 2024). In this study, 

GridSearchCV was implemented with 5-

fold cross-validation to optimize 

hyperparameters specific to the MLP-ANN 

model, such as 'activation', 'alpha', 

'hidden_layer_sizes', and 'solver', with error 

metrics used to assess the model's 

performance. 

For this study, the outputs from the Level 

0 base models were used as input data 

(common variables) for the Level 1 meta-

model. The dataset was split into 70% for 

training and 30% for testing at both levels 

(Figure 1). The Level 0 Kriging models and 

the Level 1 MLP models were both trained 

using the training dataset. While the Level 

0 models were generated using ArcGIS 10.8 

Geostatistical Wizard, the Level 1 model 

was developed in Python 3.8 using the 

Scikit Learn library. 

2.4.  Accuracy assessment 

Root Mean Squared Error (RMSE) is 

designed to compare the final predicted 

output with the target output and is a 

performance metric calculated from the 

differences between the network's output 

and the target. RMSE is inversely 

proportional to prediction accuracy (a larger 

RMSE value indicates lower prediction 

accuracy). The RMSE value is calculated 

using the following equation *; 

 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝐸𝑖 − 𝑀𝑖)2𝑛

𝑡=1       (9) 

Where RMSE (Root Mean Square Error) 

is the square root of the average squared 

error, Ei, Mi and n represent the predicted 

values, measured values, and the number of 

samples, respectively. To evaluate the 

prediction performance of each model at 

different levels, three validation indices 

defined by Isaaks and Srivastava (1988)—

Mean Absolute Error (MAE) and Root 

Mean Square Error (RMSE)—are 

calculated using the following equations: 

 

 

𝑀𝐸 =
1

𝑛
∑ [Ẑ(𝑥𝑖) − 𝑍(𝑥𝑖)]

𝑛
𝑖=1        (10) 

𝑀𝐴𝐸 =
1

𝑛
∑ |Ẑ(𝑥𝑖) − 𝑍(𝑥𝑖)|

𝑛
𝑖=1      (11) 

𝑅2 = 1 −
∑ (𝑧𝑖−𝑧𝑖̂)

2𝑛
𝑖=1

∑ (𝑧𝑖−z)2𝑛
𝑖=1

      (12) 

 

In the equation; Ẑ(xi) represents the predicted soil properties (such as pH or EC), Z(xi) refers to 

the measured soil properties, and n is the number of samples used for validation. 
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3. Results and Discussion 

3.1. Statistical analysis 

When comparing the statistical 

properties of soil pH and electrical 

conductivity (EC) values between the 

training and test datasets, several 

similarities and differences were observed 

(Table 1). For pH values, there were no 

significant statistical differences between 

the two datasets, both showing similar 

distributions. The mean pH value for both 

the training and test datasets was 7.78. 

However, the standard deviation for the 

training dataset was 0.09, slightly higher 

than the test dataset's standard deviation of 

0.08, suggesting slightly more variability in 

the training data's pH values. 

For EC values, the mean in the training 

dataset was 0.44, while the test dataset's 

mean was 0.45. However, the coefficient of 

variation for EC was higher in the test 

dataset (31.45%) than in the training dataset 

(24.27%), indicating that the EC values in 

the test data exhibited greater variability. 

These findings suggest that the training and 

test datasets may exhibit different 

characteristics during model validation, 

with the test dataset, particularly for EC 

predictions, requiring more careful analysis. 

 

Table 1. Statistical properties of soil pH and EC values for training and test data 
  Training Test 

  pH EC pH EC 

Number of Samples 70 70 30 30 

Mean 7.78 0.44 7.78 0.45 

Standard Deviation 0.09 0.11 0.08 0.14 

Minimum 7.45 0.275 7.58 0.282 

Maximum 7.95 0.784 7.92 0.947 

Coefficient of Variation (%) 1.16 24.27 0.99 31.45 

 

3.2. Model parameters 

In this study, the spatial distribution of 

soil pH and EC was modeled using digital 

soil mapping techniques and machine 

learning algorithms. The first stage of 

spatial modeling for soil pH, referred to as 

Level 0 (base models), was performed using 

three different kriging interpolation 

methods: Ordinary Kriging (OK), Universal 

Kriging (UK), and Disjunctive Kriging 

(DK), which aim to capture distance-

dependent variations in soil properties. The 

semivariogram parameters and spatial 

dependence rates for soil pH and EC values, 

based on the OK, UK, and DK methods, are 

summarized in Table 2. The spatial 

dependence rate is defined as the ratio of the 

nugget to the sill and is interpreted 

according to the classification proposed by 

Camberdella (1994). According to this 

classification, a spatial dependence rate of 

<25% indicates strong spatial dependence, 

between 25-75% indicates moderate spatial 

dependence, and >75% indicates weak 

spatial dependence. 

For the analysis of pH values, the OK 

method showed a nugget value of 

0.0000258017, a partial sill value of 

0.00010771, and a total sill value of 

0.00013351, resulting in a spatial 

dependence rate of 80.7%, which indicates 

weak spatial dependence. The range value 

of 5530 m suggests a moderate effect 

distance. The UK method produced a 

nugget value of 0.0011356647, a partial sill 

value of 0.00682873, and a total sill value 

of 0.0079644. With a spatial dependence 

rate of 85.7%, it also indicated weak spatial 

dependence, suggesting that pH values are 

distributed homogeneously over a wide 

spatial area. The range value of 5530 m was 

consistent with that of the OK method. In 

the DK method, the nugget value was 

0.2352803000, the partial sill value was 
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0.767537, and the total sill value was 

1.0028173, indicating higher variation in 

pH values. The spatial dependence rate for 

DK was 76.5%, also indicating weak spatial 

dependence. The range value of 5050 m 

suggested a shorter effect distance 

compared to the OK and UK methods. 

These results indicate the variations in the 

spatial distribution of soil pH across 

different kriging methods, offering unique 

insights into the spatial structure of the data. 

In the analysis of EC values, for the OK 

method, the nugget value was calculated as 

0.0061058190, the partial sill as 

0.00785807, and the total sill as 

0.01396389. This method shows a moderate 

spatial dependence rate of 56.3%, with a 

range value of 5762 m, indicating a 

medium-sized effect distance. For the UK 

method, the nugget value was determined as 

0.0012816100, the partial sill as 

0.00013297, and the total sill as 

0.00141458, showing a spatial dependence 

rate of 90.6%. This indicates weak spatial 

dependence, with EC values being more 

homogeneously distributed and a shorter 

effect distance of 3551 m. For the DK 

method, the nugget value was calculated as 

0.0149452000, the partial sill as 

0.03995901, and the total sill as 

0.05490421, indicating a model with higher 

variation in EC values. The spatial 

dependence rate of 72.8% suggests 

moderate spatial dependence, with the 

range value of 9638 m reflecting a very 

large effect distance. 

Overall, the findings suggest that soil pH 

values in the study area generally exhibit 

weak spatial dependence, whereas EC 

values show moderate spatial dependence. 

These results align with those of Zhao et al. 

(2024), who conducted a similar study on a 

European scale. In their research, they 

found that pH shows weak dependence on 

environmental variables but a stronger 

dependence on EC, which is attributed to 

differing soil processes. Moreover, they 

demonstrated that the spatial variation of 

pH is often associated with topography and 

carbonate content, while EC is more 

strongly influenced by salinity and climatic 

factors. 

 

Table 2. Semivariogram parameters and spatial dependence ratios for different kriging methods for soil 

pH and EC values 
  Model Nugget Partial Sill Sill Range (m) Spatial Dependence (%) 

p
H

 

Ordinary Kriging 0.0000258017 0.00010771 0.00013351 5530 80.7% 

Universal Kriging 0.0011356647 0.00682873 0.0079644 5530 85.7% 

Disjunctive Kriging 0.2352803000 0.767537 1.0028173 5050 76.5% 

E
C

 

Ordinary Kriging 0.0061058190 0.00785807 0.01396389 5762 56.3% 

Universal Kriging 0.0012816100 0.00013297 0.00141458 3551 90.6% 

Disjunctive Kriging 0.0149452000 0.03995901 0.05490421 9638 72.8% 

 

The optimal hyperparameters for the 

Level 1 Multi-Layer Perceptron (MLP) 

models are presented in Table 3. For both 

pH and EC values, various hyperparameter 

settings were tuned using GridSearchCV. In 

this study, to develop the final spatial 

models for soil pH and electrical 

conductivity (EC) characteristics, the input 

data consisted of the OK, UK, and DK 

values. For the Level 1 MLPpH model, the 

best performance was achieved with the 

following hyperparameters: 'relu' activation 

function, an α (L2 regularization term) of 

0.001, a single hidden layer with 50 

neurons, and the 'adam' solver. For the 

Level 1 MLPEC model, the lowest Mean 

Squared Error (MSE) was obtained with the 

'tanh' activation function, an α of 0.0001, a 

single hidden layer with 100 neurons, and 

the 'adam' solver. These hyperparameter 
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selections ensured that the models 

generalized well according to the data 

characteristics and facilitated an efficient 

training process. 

 

Table 3. Optimal Hyperparameters for Level 1 MLP Model 

Model Optimal Hyperparameters 

Level 1 

MLPpH 
{'activation': 'relu', 'alpha': 0.001, 'hidden_layer_sizes': (50,), 'solver': 'adam'} 

Level 1 

MLPEC 
{'activation': 'tanh', 'alpha': 0.0001, 'hidden_layer_sizes': (100,), 'solver': 'adam'} 

 

3.3. Digital soil maps 

The predicted spatial distribution maps 

for soil pH from the Level 0 base models 

(OK, UK, and DK) and the Level 1 meta-

model (MLPpH) are shown in Figure 2. The 

numerical soil map for the MLPpH model 

displays the broadest spatial variation, 

capturing small-scale spatial changes, with 

a minimum value of 7.62, a maximum value 

of 7.92, and a standard deviation of 0.05. In 

comparison, the Level 0 models are ranked 

based on their ability to capture general 

trends and large-scale variations in pH 

values, with the following standard 

deviation values: UK (0.04), OK (0.03), and 

DK (0.01). 

Soil pH maps for the study area, 

generated using different interpolation 

methods and modeling approaches, are 

presented in Figure 2. The OK method (a) 

reveals distinct spatial patterns in pH 

distribution, with smooth transitions. pH 

values range from 7.705 to 7.870, showing 

high pH values concentrated in the northern 

regions and lower pH values predominantly 

in the central and southern regions. The DK 

method (b) shows more pronounced spatial 

variability compared to OK, although its 

prediction range is narrower, from 7.693 to 

7.833. This narrower range indicates 

reduced sensitivity to potential over-

smoothing or outlier effects. The spatial 

locations of high and low pH regions are 

similar to those in the OK method, but the 

transition zones are less abrupt. The UK 

method (c) most effectively highlights the 

variability in pH values, with a broader pH 

range from 7.528 to 7.914. This method 

captures spatial gradients more clearly, with 

high pH areas concentrated in the northeast 

and low pH areas more prominent in the 

southwest. 

The Level 1 MLPpH Model (d) provides 

smoother transitions in spatial patterns 

compared to other methods, with a 

prediction range from 7.619 to 7.926. This 

model effectively captures small-scale 

differences and potential extreme pH values 

in both the northern and southern regions in 

great detail. While the spatial patterns 

generally align with those of the other 

methods, the MLP model stands out for its 

ability to capture complex interactions in 

spatial relationships with greater flexibility. 

Overall, all methods consistently 

identify high pH values in the 

northern/northeastern regions and low pH 

values in the southern/central regions. 

However, the sensitivity to transition zones 

and the approach to spatial dependency vary 

across methods. The UK method is 

particularly strong in detecting spatial 

gradients, making it a solid choice for 

capturing pH variations. The OK method 

offers a balanced and reliable approach for 

overall pH mapping, while the DK method 

may be preferred for reducing the impact of 

outliers. The MLP model excels in its 

flexibility to capture nonlinear spatial 

relationships. However, for the final 

selection of methods, it is recommended 

that validation using local data be 

performed to ensure accuracy. 
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(a)      (b) 

 

(c)      (d) 

Figure 2. Digital soil maps for soil pH: a, b, and c correspond to Level 0 kriging interpolation methods—Ordinary 

Kriging, Disjunctive Kriging, and Universal Kriging, respectively. d represents the Level 1 MLPpH model. 

 

The predicted digital soil maps for soil 

EC are presented in Figure 3. The analysis 

of the soil EC maps highlights the spatial 

variability characteristics of the different 

methods used. The OK method predicted 

EC values ranging from 0.318 dS/m to 

0.780 dS/m, providing smooth and balanced 

transitions. High EC values were 

concentrated in the southwest, while low 

EC values were predominantly observed in 

the northern and eastern regions. The DK 

method presented a similar distribution but 

showed more pronounced differences in 

transition zones. In this method, EC values 

ranged from 0.324 dS/m to 0.769 dS/m, 

with high EC areas more concentrated in 

smaller zones, while low EC areas 

expanded. 

The UK method predicted EC values 

within a wider range, from 0.317 dS/m to 

0.843 dS/m, reflecting spatial variability 

more distinctly. High EC concentrations in 

the southwest were defined in detail, and 

low EC areas were more prominent in the 

northeast. The Level 1 MLPEC model 

predicted EC values between 0.249 dS/m 

and 0.911 dS/m, offering a wider variation 

compared to other methods. Although the 

spatial patterns were generally consistent 

with OK and DK, the MLP model provided 

smoother transitions and better-defined 

high EC areas. 

Overall, high EC values in the southwest 

and low EC values in the northern and 

eastern regions were consistently observed 

across all methods. OK and DK methods 

provided balanced and general predictions, 

while UK and the MLPEC model were 

more effective in capturing detailed spatial 

variations. UK stood out in defining 
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gradients and transition zones, while the 

MLPEC model flexibly captured nonlinear 

relationships and complex spatial patterns. 

The final choice of method should depend 

on the validation data and research 

objectives. 

 

 

(a)       (b) 

 

   (c)      (d) 

Figure 3. The digital soil maps for soil EC are presented as follows: Figure 3a shows the Level 0 Ordinary Kriging 

(OK) method, Figure 3b displays the Level 0 Disjunctive Kriging (DK) method, Figure 3c illustrates the Level 0 

Universal Kriging (UK) method, and Figure 3d depicts the Level 1 MLPEC model. 

 

The performance metrics of the four 

different models used for predicting the soil 

pH and EC values in the study area are 

provided in Table 4. For soil pH spatial 

prediction, the Level 1 MLPEC model 

demonstrated the best performance with 

significantly lower MSE (0.001), MAE 

(0.0204), and RMSE (0.028), and the 

highest R² (0.858) values. The low MAE 

and RMSE values indicate that the model 

effectively minimized both systematic and 

random errors. The OK and DK methods 

showed reasonable accuracy in the training 

dataset, but the OK method performed 

poorly in pH predictions, as evidenced by 

its low R² value (0.103) and higher RMSE 

(0.081) and MAE (0.059) values. 

Furthermore, the OK method had the 

highest MSE (0.007), indicating low 

accuracy in pH predictions. 

The UK method showed moderate 

accuracy in the training dataset (R²: 0.546) 

but failed in the test dataset with a negative 

R² value (-0.880). The Level 1 MLPEC 

model, however, provided the best results in 

pH prediction with MSE (0.002), RMSE 

(0.040), and R² (0.715) in the test dataset. 

Meanwhile, the OK method performed 

1179



Öztürk et al. 

acceptably in the test dataset with R² 

(0.632), while the DK method showed 

lower accuracy (R²: -0.309). The low R² in 

the training set and high R² in the test set of 

the OK method indicate that the model was 

prone to overfitting. Lu et al. (2023) 

performed soil pH mapping in Europe by 

combining multiple environmental 

variables with various machine learning 

algorithms. The study evaluated nine 

models (three linear and six nonlinear) for 

spatial prediction, using statistical metrics 

such as R², RMSE, and 

performance/deviation ratio (RPD) for 

model comparison. The results indicated 

that nonlinear machine learning models 

performed better than linear models in 

predicting soil pH. The random forest 

model achieved the best prediction 

performance with an R² value of 0.70, 

RMSE of 0.75, and RPD of 1.84. 

In soil EC predictions, the Level 1 

MLPEC model outperformed all other 

methods, showing superior performance on 

both training and test data. The MLPEC 

model achieved the highest accuracy on the 

training data with MSE (0.001), RMSE 

(0.031), and R² (0.900), and similarly 

provided the best results on the test data 

with MSE (0.002), RMSE (0.039), and R² 

(0.900). The OK method achieved high 

accuracy with R² (0.791) on the training 

data and R² (0.794) on the test data. 

However, it had relatively high RMSE 

(training: 0.0533; test: 0.0625) and MAE 

(0.0407) values, limiting error reduction. 

DK method showed moderate accuracy 

with R² values of 0.606 (training) and 0.624 

(test), along with noticeable improvements 

in RMSE (0.0732) and MAE (0.0567). On 

the other hand, UK method showed the 

lowest performance in EC predictions, 

particularly on the test data, where it lagged 

behind other methods with MSE (0.012), 

RMSE (0.108), and R² (0.380). 

Overall, the MLP model provided the 

best results across all metrics in both pH and 

EC predictions, demonstrating a clear 

advantage over the other methods. These 

results highlight the potential of modern 

methods in minimizing error rates for soil 

pH predictions. Shi et al. (2009) showed 

that the HASM method performed 

excellently in spatially predicting soil pH, 

particularly with low MAE (0.16) and 

RMSE (0.22) values. Similarly, the stacked 

machine learning model used in our study 

achieved significant success with low MAE 

(0.0204) and RMSE (0.028) values in pH 

predictions. Unlike HASM and other 

geostatistical methods, the meta-model 

approach was more flexible in modeling 

nonlinear relationships, further reducing 

error rates, and offering a method that could 

contribute to sustainable agricultural 

practices. The MLP model stands out with 

low MSE, RMSE, and MAE values, and its 

high R² values prove the explanatory power 

of the model. The R² metric used to evaluate 

pH and EC predictions in our study shows 

the proportion of total variance that the 

model can explain. Zhao et al. (2024) 

reported R² values of 0.70 for pH 

predictions and 0.53 for CaCO3 predictions 

using the Extremely Randomized Trees 

(ERT) algorithm in their European-scale 

study. These values indicate that nonlinear 

models perform better than linear models in 

capturing complex environmental factors. 

The performance of the models in our study 

aligns with these findings. RMSE, used to 

evaluate model accuracy, provides the 

square root of the average of the squared 

differences between predicted and 

measured values. Zhao et al. (2024) 

reported an RMSE of 0.75 for pH 

predictions, demonstrating that the ERT 

algorithm achieved lower error rates, 

especially for pH predictions. The RMSE 

results used in our study indicate that the 

model performance is acceptable when 

compared with these reference values.  

Among Kriging methods, DK generally 

performs better than OK and UK. In EC 

predictions, the OK method shows 

reasonable performance, but the MLP 

method stands out as the more powerful 

approach. Although DK provides 

reasonable results in some cases, its 

accuracy is not as high as that of the MLP 
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model. However, particularly in pH 

predictions, UK’s weak performance on the 

test set limits the generalizability of the 

method. These findings highlight that the 

MLP model is the most suitable method for 

pH and EC predictions in terms of accuracy 

and reliability. The results suggest that deep 

learning-based approaches, such as MLP, 

outperform traditional spatial prediction 

methods, especially for complex and 

nonlinear data structures. Our study found 

that machine learning models demonstrated 

higher performance compared to 

geostatistical methods, with stacked models 

reducing error rates. This finding aligns 

with Zhao et al. (2024), whose European-

scale study showed that nonlinear 

algorithms such as Random Forest 

performed better than classical methods like 

Kriging for pH and CaCO3 predictions. 

Zhao et al. (2024) emphasized that 

nonlinear algorithms are more effective in 

capturing complex interactions of 

environmental variables, enhancing model 

performance. 

In another study, Kshatriya et al. (2024) 

compared deep learning–multi layer 

perceptron (DL-MLP) and one-dimensional 

convolutional neural networks (1D-CNN) 

models and reported that the DL-MLP 

model performed better in pH predictions 

(R²=0.30, RMSE=0.97). This finding is 

consistent with the accurate results of the 

Level 1 MLP models in our study. However, 

Kshatriya et al. (2024) noted that deep 

learning models are sensitive to high data 

requirements and that low sampling density 

could limit model accuracy. This 

observation corroborates the impact of data 

density on prediction accuracy observed in 

our study. Furthermore, the study supported 

the fact that DL-MLP models are 

particularly effective at capturing complex 

spatial patterns, which is reflected in the 

performance of pH and EC predictions in 

our study. 

In a recent study, Kshatriya et al. (2024) 

analyzed model accuracies using metrics 

such as R² and RMSE for pH and organic 

carbon predictions and found that the DL-

MLP model achieved reasonable accuracy 

in pH predictions (R²=0.30, RMSE=0.97). 

When compared to the model accuracy 

values obtained in our study, these results 

reveal the potential of the DL-MLP model 

for predicting soil properties. The lower 

RMSE values from the models in our study 

suggest that machine learning algorithms 

can improve performance in regions where 

spatial variability shows more 

homogeneous distribution. However, the 

relatively low R² value in Kshatriya et al. 

(2024) study suggests that the effect of 

environmental variables on pH predictions 

might be limited, and including additional 

variables in the model could improve 

accuracy. 

When evaluating the performance of soil 

pH and EC predictions, it is crucial to 

consider the MAE (Mean Absolute Error) 

values. MAE represents the average of the 

absolute differences between the predicted 

and actual values, providing a clear measure 

of the model's error magnitude. One of the 

key advantages of MAE is its lower 

sensitivity to the magnitude of errors 

compared to other metrics, as it treats all 

errors equally. This makes MAE 

particularly useful for realistic error 

assessment in models, as it is less 

influenced by outliers. 

For pH predictions, the MLP model 

demonstrated the lowest MAE (0.020) on 

the training dataset, indicating the highest 

accuracy and reliability. The DK method 

achieved a similar MAE value of 0.020, 

though it lagged behind the MLP model in 

other performance metrics. The MAE for 

the UK method (0.029) was slightly higher, 

while the OK method had the highest MAE 

(0.059), indicating larger errors in 

predictions. On the test data, the MLP 

model again performed best with the lowest 

MAE (0.037), while the OK method 

showed a reasonable MAE (0.035). 

However, the UK method (0.074) and DK 

method (0.067) exhibited relatively high 

MAE values, indicating a significant 

increase in prediction error. 
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Table 4. Performance comparison of kriging methods and multi-layer perceptron (MLP) in pH and EC 

spatial prediction using 

  Dataset Method MSE RMSE MAE R2 

p
H

 

T
ra

in
in

g
 

Ordinary Kriging 0.007 0.081 0.059 0.103 

Universal Kriging 0.003 0.058 0.029 0.546 

Disjunctive Kriging 0.002 0.047 0.0210 0.694 

MLP 0.001 0.028 0.020 0.858 

E
C

 

Ordinary Kriging 0.003 0.053 0.041 0.791 

Universal Kriging 0.009 0.095 0.074 0.331 

Disjunctive Kriging 0.005 0.073 0.057 0.606 

MLP 0.001 0.031 0.024 0.900 

p
H

 

T
es

t 

Ordinary Kriging 0.002 0.046 0.035 0.632 

Universal Kriging 0.011 0.104 0.074 -0.880 

Disjunctive Kriging 0.007 0.086 0.067 -0.309 

MLP 0.002 0.040 0.037 0.715 

E
C

 

Ordinary Kriging 0.004 0.062 0.047 0.794 

Universal Kriging 0.012 0.108 0.081 0.380 

Disjunctive Kriging 0.007 0.084 0.064 0.624 

MLP 0.002 0.039 0.028 0.900 

 

For EC predictions, the MLP model 

again showed superiority in terms of MAE. 

On the training dataset, the MLP model 

achieved the best performance with the 

lowest MAE (0.024). The OK method 

(0.041) provided an acceptable MAE for 

EC predictions, while the DK method 

(0.057) and UK method (0.074) showed 

higher MAE values, indicating an increase 

in errors. On the test data, the MLP model 

continued to outperform the others with the 

lowest MAE (0.028), demonstrating greater 

consistency in its predictions. The OK 

method (0.047) also yielded a reasonable 

MAE on the test data, but the DK (0.064) 

and UK (0.081) methods exhibited higher 

MAE values, signaling increased prediction 

errors. 

Overall, the MAE values confirm that 

the MLP model consistently provides the 

lowest error rates for both pH and EC 

predictions, establishing it as the most 

reliable method among the models tested. 

While the OK method produced reasonable 

results in terms of MAE, particularly on the 

 
 

test data, its performance was less 

impressive in other metrics. Conversely, the 

DK and UK methods showed weaker 

performance in terms of MAE, further 

highlighting the MLP model’s superior 

accuracy. The robustness of MAE to 

outliers has allowed for a more realistic and 

reliable assessment of model performance, 

making it a crucial metric in evaluating the 

accuracy of the predictions. These findings 

underscore the MLP model's ability to 

consistently deliver reliable results with 

minimal error in both training and test 

datasets for pH and EC predictions. 

Similarly, Vandana et al. (2024) 

investigated the spatial variability of soil pH 

and EC values in the South Telangana 

region of India, using a combination of 

kriging and machine learning techniques for 

digital soil mapping. The performance of 

the models was evaluated using RMSE, ME 

(Mean Error), and R² metrics. Their results 

showed that the Random Forest (RF) model 

outperformed traditional geostatistical 

methods, offering an effective tool for 
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spatial prediction of soil pH and EC. The RF 

model's high R² and low RMSE values 

indicated its reliability in digital soil 

mapping. A similar study by Tziachris et al. 

(2020) compared machine learning models 

(including Random Forest, Gradient 

Boosting, and Neural Networks) with 

geostatistical methods (Ordinary Kriging, 

Regression Kriging) for predicting soil pH. 

The study highlighted that low MAE could 

significantly enhance prediction accuracy, 

with the Gradient Boosting Kriging 

(GBKxgbT) model achieving an MAE of 

0.177. In comparison, the MLP model in our 

study excelled in pH predictions, 

demonstrating low MAE (0.0204) and 

RMSE (0.028) values. These findings 

indicate that machine learning-based 

approaches, such as MLP, are highly 

effective in minimizing error rates and 

modeling nonlinear relationships, offering 

promising potential for improving soil 

property predictions. 

Mousavi et al. (2023) identified 

significant performance differences 

between the integration of kriging and 

machine learning methods, which align 

with the findings in our study when 

evaluated using various error metrics. In 

their research, the RF-OK model, which 

models the kriging of random forest 

residues, demonstrated successful 

performance in pH predictions with an R² 

value of 0.82. Similarly, the MLP-ANN 

model in their study outperformed this 

approach, achieving a higher R² value of 

0.858 and a lower RMSE value of 0.028 for 

pH predictions. This performance 

difference can be attributed to the MLP-

ANN model’s superior ability to capture 

nonlinear relationships and generalize more 

effectively, resulting in smaller error rates. 

In contrast, the RF-OK model excels in 

addressing large geographical variations 

and environmental variables, offering 

broader applicability, especially in diverse 

landscapes. The accuracy differences 

between these two models are influenced by 

factors such as dataset size, the impact of 

environmental variables on modeling, and 

the spatial dependence levels of the data. 

Hybrid models, such as RF-OK and MLP-

ANN, have shown significant 

improvements in prediction accuracy for 

pH and EC in the literature. Barikloo et al. 

(2024), in their study in the Urmia Plain, 

reported an R² of 0.82 and RMSE of 0.032 

for the Random Forest (RF) model in pH 

predictions. However, by integrating 

kriging with the Random Forest model (RF-

OK), they achieved an R² of 0.89 and 

reduced the RMSE to 0.007. Similarly, in 

our study, the MLP-ANN model 

outperformed traditional kriging methods, 

achieving an R² of 0.858 and an RMSE of 

0.028 for pH predictions, showcasing the 

effectiveness of machine learning models in 

improving accuracy over conventional 

methods. These findings reinforce the 

potential of hybrid approaches in enhancing 

soil property predictions by leveraging the 

strengths of both machine learning and 

geostatistical techniques. 

4. Conclusion 

This study demonstrates that stacked 

machine learning models, particularly the 

Multilayer Perceptron (MLP) neural 

network meta-model, outperform 

traditional geostatistical methods in spatial 

predictions of soil pH and electrical 

conductivity (EC) values. The integration of 

the MLP meta-model with fundamental 

geostatistical methods, such as Ordinary 

Kriging (OK), Universal Kriging (UK), and 

Disjunctive Kriging (DK), has significantly 

enhanced prediction accuracy by reducing 

both systematic and random errors. 

The MLP-based meta-model achieved 

an impressive R² value of 0.858 for pH 

predictions and 0.900 for EC predictions, 

demonstrating its superior performance 

compared to conventional geostatistical 

methods. The MLP model excelled at 

capturing small-scale spatial variations and 

nonlinear relationships, effectively 

minimizing key error metrics like RMSE 

and MAE. In contrast, methods like UK and 

DK displayed more limited generalizability 

in certain scenarios, which reduces their 
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suitability for sensitive decision-making 

processes, such as those in agriculture. 

The findings from this study emphasize 

the potential of machine learning 

algorithms to significantly enhance the 

mapping of soil properties. These 

approaches not only improve prediction 

accuracy but also support the development 

of more reliable, detailed digital soil maps, 

which are essential for precision agriculture 

applications. By leveraging machine 

learning, agriculture can benefit from more 

precise insights into soil conditions, aiding 

in better-informed decision-making for 

sustainable farming practices. 

5. Recommendations 

To further enhance model accuracy, 

integrating environmental factors such as 

climate, topography, and vegetation into the 

predictive models is highly recommended. 

Incorporating such comprehensive datasets 

will not only improve the generalization 

ability of the predictions but also offer a 

deeper understanding of spatial variability 

in soil properties. Testing the proposed 

methods across different regions and soil 

types will provide valuable insights into 

their applicability in a broader geographic 

context, enabling a more thorough 

evaluation of the models' ability to adapt to 

regional dynamics. 

For precision agriculture applications, 

the creation of high-resolution soil maps 

that highlight small-scale differences is 

essential. These maps will support more 

accurate and effective decision-making in 

land management, providing a practical tool 

for users in the agricultural sector. 

Additionally, training machine learning 

algorithms with more extensive and 

diversified datasets can further boost model 

accuracy. By utilizing larger datasets, 

models can better capture nonlinear 

relationships and improve prediction 

precision.  

Finally, the development of user-friendly 

software and digital tools tailored for the 

agricultural sector is of great significance. 

These technologies will make the soil 

mapping process more accessible, 

empowering farmers and other stakeholders 

with the tools necessary for informed 

decision-making, ultimately supporting 

sustainable agricultural practices. 
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