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Abstract 

Modeling and analyzing lifespan data is essential in many application areas, including medicine, engineering, and 

finance. These types of data have been modeled using various lifetime distributions. The assumed probability 

model(s) have a significant impact on the efficiency of the procedures used in statistical research.Forthisreason, 

much work has been devotedtoderivingalargeclass of normal probability distributions andrelated statistical 

techniques. However,real-worlddatachallenge all established probability models, leaving manyimportant issues 

unresolved.This present work add another novel distribution with two parameter called two-parameter 

betaexponential distribution (TPBED), including the beta (2,b)distribution and the new XLindley distribution as 

special cases. We provide a complete mathematical treatment of this distribution. We derive the moment 

generating function and the r-th moment, thereby generalizing some results from the literature. Expressions for the 

density, moment generating function, entropy and the r-th moment of the order statisticare also obtained. We 

observe in three applications to simulated and real data sets(demography and geostandards) that this model is quite 

flexible and can be used quite effectively for analyzing active data in place of one and two-parameter distributions 

such asthe exponential, Lindley, XLindley, new XLindley, Xgamma, Zeghdoudi, Chen, Lindley gamma, quasi-

new Lindley, two-parameter Lindley, Power XLindley, and Gamma. 
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Kouadria and Zeghdoudi 

1. Introduction 

In many applied sciences such as 

medicine, engineering, and finance, among 

others, the modelling and analysis of life 

expectancy data is important. Several 

lifetime distributions have been used to 

model this type of data. The quality of the 

procedures used in statistical analysis 

depends heavily on the assumed model or 

probability distribution. For this reason, 

considerable efforts have been made to 

develop large classes of standard 

probability distributions as well as related 

statistical methods. However, there are still 

many important issues that do not hold up 

to classical or standard probability models. 

Some generalbeta distributions 

havebeenremoved. 

Recently, some beta-generalized 

distributions have been considered. The 

beta-normal, beta-Frêchet, beta-Gumbel, 

beta-exponential, beta generalized half-

normal, beta generalized Rayleigh, beta 

generalized exponential, and beta Lindley 

distributions, in that order, were put forth by 

(Eugene et al., 2002), (Nadarajah and 

Gupta, 2004),(Nadarajah and Kotz, 2004), 

(Nadarajah and Kotz, 2006),(Pescim et al., 

2010),(Cordeiro et al., 2013), (Barreto-

Souza et al., 2010)and (Merovci and 

Sharma, 2014). (Jones, 2004) explores this 

generic beta family and demonstrates that it 

has intriguing distributional characteristics 

as well as the possibility for fascinating 

statistical applications. Its order statistics 

serve as the motivation for this discussion. 

In this paper, we introduce the two 

parameter beta-exponential distribution, a 

novel generalization of the new XLindley 

distribution. In the framework of Bayesian 

statistics, the new XLindley distribution 

was first put up by (Khodja et al., 2023). 

(Khodja et al., 2023), they discussed the 

various statistical properties of new 

XLindley distribution. Furthermore, the 

research employs a Monte Carlo simulation 

to assess and compare the performance of 

various estimators in estimating the 

unknown parameter of the new XLindley 

distribution. This model was compared with 

many current distributions such as 

XLindley (Chouia and Zeghdoudi, 2021), 

Weibull, gamma, exponential, 

Zeghdoudi(Messaadia and Zeghdoudi, 

2018), Akash (Rama, 2015), Lindley 

(Ghitany et al., 2008), Chris-Jerry 

(Onyekwere and Obulezi, 2022), Shanker, 

and Xgamma (Sen et al., 2016). Among all 

models, it is concluded that the new one-

parameter distribution performed the best in 

modeling based on criteria such as the 

Akaike information criterion, Bayesian 

information criterion, and others. The 

cumulative distribution function (cdf) of the 

new XLindley distribution (NXLD) 

(Khodja et al., 2023) as follows: 

 

( ) 1 1
2

xx
F x e  − 

= − + 
   where 0x   and 0  . 

And the corresponding (pdf) defined as follows: 

( )1
( )

2

x
x

f x e  
−

+
=

where 0x   and 0  . 

Here is how the rest of the paper is 

organized. In Section 2, the formulation of 

the proposed distribution is presented. 

Some distributional properties of the new 

model are discussed in Section 3. We give 

two real data sets to demonstrate the 

applicability of the proposed distribution in 

section 4. A simulation algorithm is 

provided in Section 5 to generate the 

random sample from two-parameter beta 

exponential distribution (TPBED). 

1.1. Formulation of the two-parameter 

beta exponential distribution (TPBED) 

Let F (x) denote the cumulative 

distribution function of a random variable X 
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of the new XLindley distribution, and then 

the cumulative distribution function for a 

new class of distribution for the random 

variable X; as defined by (Eugene et al., 

2002)is generated by applying the inverse 

(cdf) to a beta(2,b) distributed random 

variable to obtain 
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And the (pdf) of TPBED 
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We regard the series expansion as valid for 1z   and 0   real non integer 
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Finally the (pdf) of TPBED is given by 

1 ( 1)( ) ( )q q x sg x W x x e + − += +

  

2.Statistical Properties 

2.1.Moments 

Proposition 1. If ( , )X TPBED b → , the k th moment is given by: 
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2.2. Moments generating function 

The (mgf) of the two-parameter beta exponential distribution (TPBED) is given by 

0
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2.3. Entropy 

Most people agree that the degree of 

uncertainty in a probability distribution may 

be determined using information and 

entropy. Nonetheless, a lot of correlations 

have been developed using entropy's 

properties. The fluctuation in uncertainty is 

measured by the entropy of a random 

variable X. The definition of Rényi's 

entropy is as follows: 
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Where t  is integer greater than 0 and 1t  , for two-parameter betaexponential distribution 

(TPBED), we have:    
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Finally the Rényi's entropy of two-parameter betaexponential distribution (TPBED) is given 

by: 
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2.4. Incomplete moments 

The k th incomplete moment of X  can be expressed as follows, according to similar 

computations: 
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Finally, 
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2.5. Stress-strength reliability 

One way to calculate the stress-strength 

reliability R  for a component with 

independent strength and stress random 

variables X  andY  , following the two-

parameter beta exponential distribution 

(TPBED) with parameters 1  and 2  , 

respectively, is as follows: 
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2.6. Order statistics 

The i th order statistic of a sample is its 

i th smallest value. For a sample of size n , 

the n th order statistic (or largest order 

statistic) is the maximum; that is 
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The sample range is the difference between the maximum and minimum. It is clearly a function 

of the order statistics: 
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We know that if
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The (pdf) of the i th order statistic for the two-parameter beta exponential distribution (TPBED) 

is given by 
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3. Illustrations with Simulated and Real Datasets 

3.1. Simulated data 

In this part, we offered an approach to produce a random sample for the specified sample 
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size (n) and parameter values of the two-parameter beta exponential distribution (TPBED). The 

steps involved in the simulation process are as follows. 

• Step1. Set 35n = and ( )1, 3b  = = . 

• Step2. Set initial value 
0 1x   and 0k = . 

• Step3. Generate U∼Uniform ( )0,1 ,it's meanU x= . 

• Step4. Update 
0x  by using Newton's formula such as

( )

( )
0

* 0

x x

G x U
x x

g x




=

 −
= −  

 
 . 

• Step5. if * 0x x −   , then we take this value
*x . 

• Step6. if * 0x x −  , then we change the initial value, and go to step 4 . 

• Step7. repeat steps 4 to 6, and obtained random sample from ( )G x . 

We created a sample from the two-parameter betaexponential distribution (TPBED) with size 

35n = using the prior algorithm. The simulated sample is given by: 

0.1, 0.28252, 0.42337, 0.54985, 0.67905, 0.83465, 1.0757, 1.6796, 0.2, 0.35618, 0.48759, 0.61321,

  0.75163, 0.93779, 1.2881, 2.7059, 0.3, 0.43825, 0.56417, 0.69491, 0.85603, 1.1155, 1.8245, 0.4,

      0.52776, 0.65513, 0.80347, 1.0210, 1.5061, 0.5, 0.62596, 0.76704, 0.96159, 1.3455, 3.124

 

The variance-covariance matrix
^ ^

1 ,I b −  
 
 

 of the MLEs under the modified beta-exponential 

distribution for simulated data is computed as  

0.172078 1.128508

1.128508 7.651671

 −

−


 
 

 

The variances of the MLE of b  and   under the TPBED for simulated data are
^

0.172 8a 07v r b
 

= 
 

, and 
^

7.651 1a 67v r 
 

= 
 

. Thus,95%  the confidence intervals for b  and 

 are 1.27[0, 9243]  and 9.71[0, 7297]  respectively. 

Table 1.The ML estimates,-2 log-likelihood, AIC, BIC,AICC, and HQIC for Simulated data. 

Model ^

b  

^

  

^

  
AIC  BIC  2L−  AICC  HQIC  

exponential  1.129   63.496  65.051  61.496  63.617  64.033  

Lindley  1.568   61.079  62.635  59.079  61.201  61.616  

XLindley  1.332   62.934  64.489  60.934  63.056  63.471  

New-XLindley  1.749   59.626  61.182  57.626  59.747  60.163  

Xgamma  1.930   65.001  66.557  63.001  65.123  65.538  

Zeghdoudi  2.735   52.254  53.809  50.254  52.375  52.791 

Chen  0.814  0.545  64.945  68.056  60.945  65.320  66.019  

gamma Lindley  29.326  2.241  54.582  57.693  50.582  54.957  55.656  

new quasi Lindley  2.144  44.158  55.586  58.697  51.586  55.961 56.660  

two parameter 

Lindley I 

 2.186  37.857  55.016  58.127  51.016  55.391 56.090  

Power XLindley  2.849  0.688  117.67  120.78  113.67  118.04  118.74  

Gamma  2.673  2.367  53.729  56.840  49.729  54.104  54.803  

TPBED 0.466  4.296  /  53.262  56.373  49.262  53.637  54.336  
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3.2. Real data analysis 

Two actual datasets are used in this 

section to illustrate the new two-parameter 

model's practicality. The first actual dataset 

I shows the population of the United States 

(in millions) as recorded by the decennial 

census for the period 1790--1970.(McNeil 

and Tukey, 1977) 

 

3.93, 5.31, 7.24, 9.64, 12.90, 17.10, 23.20, 31.40, 39.80, 50.20, 62.90, 76.00, 92.00, 105.70, 

122.80, 131.70, 151.30, 179.30, 203.20 

 

 
Figure 1. Histogram, kern density, box plot and QQ plot of the set data I. 

 

And the second dataset II shows a 

numeric vector of 31 determinations of 

nickel content (ppm) in a Canadian syenite 

rock(Abbey, 1988). 

5.2, 6.5, 6.9, 7.0, 7.0, 7.0, 7.4, 8.0, 8.0, 8.0, 8.0, 8.5, 9.0, 9.0, 10.0, 11.0, 11.0, 12.0, 12.0, 13.7, 

14.0, 14.0, 14.0, 16.0, 17.0, 17.0, 18.0, 24.0, 28.0, 34.0, 125.0 
 

Table 2. The ML estimates,-2 log-likelihood, AIC, BIC,AICC, and HQIC for dataset I. 

Model ^

b  

^

  

^

  
AIC  BIC  2L−  AICC  HQIC  

exponential  0.014   201.32  202.26  199.32  201.55  201.48  

Lindley  0.028   207.63  208.57  205.63  207.86  207.79  

XLindley  0.028   206.92  207.87  204.92  207.16  207.08  

New-XLindley  0.021   201.65  202.60  199.65  201.89  201.81  

Xgamma  0.040   215.44  216.38  213.44  215.67  215.60  

Zeghdoudi  0.043   220.98  221.92  218.98  221.22  221.14  

Chen  0.297  0.027  203.96  205.85  199.96  204.71  204.29  

gamma Lindley  0.017  0.024  203.23  205.12  199.23  203.98  203.55  

new quasi Lindley  0.024  0.001  204.55  206.44  200.55  205.29  204.87  

two parameter 

Lindley 

 0.022  44.26  203.70  205.59  199.70  204.45  204.02  

Power XLindley  1.056  0.194  251.30  253.19  247.30  252.05  251.62  

Gamma  0.014  1.006  203.32  205.21  199.32  204.07  203.64  

TPBED 0.012  1.241  202.88  204.77  198.88  203.63  203.20  
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Table 3. The ML estimates,-2 log-likelihood, AIC, BIC,AICC, and HQIC for dataset II. 

Model ^

b  

^

  

^

  
AIC  BIC  2L−  AICC  HQIC  

exponential  0.062   235.93  237.36  233.93  236.06  236.39  

Lindley  0.118   231.49  232.92  229.49  231.62  231.95  

XLindley  0.113   232.60  234.04  230.60  232.74  233.07  

New-XLindley  0.095   235.48  236.92  233.48  235.62  235.95  

Xgamma  0.172   237.91  239.34  235.91  238.05  238.38  

Zeghdoudi  0.182   234.48  235.91  232.48  234.62  234.95  

Chen  0.319  0.087  253.08  255.95  249.08  253.51  254.01  

gamma Lindley  0.125  13.46  232.14  235.01  228.14  232.57  233.07  

new quasi Lindley  0.125  7.013  232.05  234.92  228.05  232.48  232.99  

two parameter 

Lindley I 

 0.112  0.389  233.10  235.96  229.10  233.52  234.03  

Power XLindley  1.178  0.252  318.53  321.40  314.53  318.96  319.46  

Gamma  0.117  1.867  231.93  234.80  227.93  232.36   232.87  

TPBED 0.236  0.393   227.53  230.40  223.53  227.96  228.46  

 

4.Conclusion 

We have proposed TPBED as a 

generalizationof the new XLindley 

distribution discussed by(Khodja et al., 

2023). We provide a mathematical 

treatment of this distribution thatincludes 

the density of the order statistics. We derive 

amomentgenerating function and provide 

aninfinitesummationof the moments of the 

new distribution and its order statistics. 

Three applications of TPBED are given to 

show that this distribution canprovidea 

better fit than other sub models discussed in 

the literature such asexponential, Lindley, 

XLindley, new XLindley, Xgamma, 

Zeghdoudi, Chen, Lindleygamma,quasi-

new Lindley, two-parameter Lindley, 

Power XLindley, and Gamma. We hope 

that this generalization can attract broader 

applications in reliability, biology, and 

actuarial science. 
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