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Abstract 

The improvement of one-parameter lifetime distributions together with Lindley, Zegdoudi, XLindley, new 

XLindley, XGamma, etc., has usually been popular, however including a brand new parameter to a distribution 

makes it better and more flexible than the present one. This paper presents a new family of two-parameter (NTPFD) 

derivatives of the two parameter polynomial exponential family. This new version is a generalization of numerous 

novel one-parameter distributions such as: the XLindley, new XLindley, and ZLindley distributions. We study the 

main statistical properties of NTPFD: the shape of the density and hazard rate functions, moments, skewness, 

kurtosis, coefficient of variation, Bonferroni and Lorenz curves, reliability parameters, stochastic ordering, 

entropies, and quantile function. A discussion of fuzzy reliability is also given. To study the applicability, 

usefulness, reliability and superiority of the proposed distribution over existing distributions, two real data sets are 

assessed and fitted to the NTPFD distribution and potential competitors such as: an uncensored data set 

corresponding to the remission duration of a random sample of 128 patients with bladder cancer and the US 

population recorded in the decennial census during the period 1790-1970. 
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1. Introduction 

Exponential and Lindley distributions 

are two classic life expectancy distributions 

for modeling life expectancy data. Lindley 

(1958) introduced a life expectancy 

distribution called the Lindley distribution. 

Lindley distribution, which is a convex 

combination of exponential and gamma 

distributions, is a better fit and more flexible 

than exponential distribution but only one 

parameter does not allow to model all 

phenomena. For this, this work proposes a 

new family with two parameters. The 

distribution of X is a two-parameter family 

and the probability density function can be 

written as
 

 
𝑓(𝑡; 𝜃, 𝛾) = 𝑏(𝜃, 𝛾)(𝑎₀ + 𝑎₁𝑥))𝑒𝑥𝑝(−𝑐(𝜃,𝛾)𝑡) 

where b(θ,γ), a=a (θ,γ), a=a (θ,γ) and c(θ,γ) are real-valued functions on [0,+∞[ see( Belili et 

al., 2023) .We can check immediately: 

• It is non-negative for t>0 

 

• 𝑃[𝑎 < 𝑥 < 𝑏] = ∫ 𝑓(𝑥; 𝜃, 𝛾)
𝑏

𝑎
𝑑𝑥 

 

• ∫ 𝑓(𝑥; 𝜃, 𝛾)
∞

0
𝑑𝑥 = 1 

 

In this paper, we proposed a special case of two-parameter family called two parameter Lindley family (NTPFD)  

when 𝑎₀ = 𝛾, 𝑎₁ = (1 − 𝛾)𝜃  , 𝑐 = 𝜃 

The density is 𝑓(𝑥; 𝜃, 𝛾) = 𝜃(𝛾 + (1 − 𝛾)𝜃𝑥)𝑒𝑥𝑝−𝜃𝑥 

The corresponding cumulative distribution function (CDF), the survival function (SF) and hazard rate function 

(HRF) are given by 

𝐹(𝑥; 𝜃, 𝛾) = 1 − 𝑒−𝜃𝑥(1 + (1 − 𝛾)𝜃2𝑥), 𝑥, 𝜃 ≻ 0.  0 ≺ 𝛾 ≺ 1 

 

𝑆(𝑡; 𝜃, 𝛾) = 𝑒−𝜃𝑥(1 + (1 − 𝛾)𝜃2𝑥), 𝑥, 𝜃 ≻ 0.  0 ≺ 𝛾 ≺ 1 

 

ℎ(𝑡; 𝜃, 𝛾) =
𝜃²(𝛾 + (1 − 𝛾)𝜃𝑥)

(1 − 𝛾)𝜃²𝑥 + 1
 

 

 This distribution includes several 

distributions with one parameter such as:     

- The XLindley distribution Chouia and 

Zeghdoudi (2021)); 

- The new XLindley distribution Khodja 

et al. (2023)); 

- The ZLindley distribution Saadia et al. 

(2024)). 

The following is the format of this research 

paper: 

Section 2 covers survival and hazard 

functions, moments, Stochastic Order, 

Entropies and other statistical properties. 

Sections 3 consider the Fuzzy reliability. 

Finally, two specific applications 

demonstrate the superior performance of 

the new family of models (NTPFD) over the 

two-parameter Lindley , Quasi Lindley,  

Power XLindley, TPQED  distributions 

2. A general theoretical result 

2.1. Asymptotic behavior 

This subsection discusses the shape 

characteristics of the PDF and HRF, 

respectively of the NTPFD . The behavior 

of NTPFD 𝑎𝑡 𝑥 = 0 𝑎𝑛𝑑 𝑥 = ∞, 
respectively, are given by 
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lim
𝑥→0

𝑓(𝑥; 𝜃, 𝛾) =
𝛾𝜃²

𝜃𝛾 + (1 − 𝛾)𝜃
= 𝛾𝜃 

lim
𝑥→∞

𝑓(𝑥; 𝜃, 𝛾)  = 0. 

 

 

The behavior of ℎ(𝑥; 𝜃, 𝛾) 𝑎𝑡𝑥 = 0 𝑎𝑛𝑑𝑥 = ∞, respectively, are given by 

 

lim
𝑥→0

ℎ(𝑥; 𝜃, 𝛾) =
𝛾𝜃²

𝜃𝛾 + (1 − 𝛾)𝜃
= 𝛾𝜃 

 

lim
𝑥→∞

ℎ(𝑥; 𝜃, 𝛾)  = 𝑐(𝜃, 𝛾). 

 

The following proposition states that there are two shapes for the PDF of the two-parameter 

polynomial exponential distribution, depending on the range of the parameters θ and γ. 
 

Proposition 1. The PDF 𝑓(𝑥; 𝜃, 𝛾) 𝑖𝑛 (𝑟𝑒𝑓: 𝑃𝐷𝐹) of the NTPFD is 

1.  

2. Decreasing if (1 − 𝛾)𝜃 − 𝜃𝛾 > 0. 

3. Unimodel if (1 − 𝛾)𝜃 − 𝜃𝛾 > 0. 

 

Proof. The first and the second derivative of the PDF is determined as follows 
𝑑𝑓(𝑥; 𝜃, 𝛾)

𝑑𝑥
= −𝜃²𝑒−𝜃𝑥(2𝛾 − 1 + (1 − 𝛾)𝜃𝑥) 

𝑑2𝑓(𝑥; 𝜃, 𝛾)

𝑑𝑥2
= −𝜃³𝑒−𝜃𝑥(3𝜃 − 2 + (1 − 𝛾)𝜃𝑥) 

 

by equating last equation to zero and solve it with respect to x, we have: 

the solution is 𝑥 =
1−2𝛾

(1−𝛾)𝜃
then, our critical point is 𝑥∗ =

1−2𝛾

(1−𝛾)𝜃
, 𝑖𝑓 (1 − 𝛾)𝜃 − 𝜃𝛾 > 0. 

 

 

𝑑2𝑓(𝑥; 𝜃, 𝛾)

𝑑𝑡2
=

𝜃2

(1 − 𝛾)(𝜃 + 1)
𝑒−𝜃𝑡((1 − 𝛾)𝜃2𝑡 + 𝛾(𝜃 − 2)),

𝑑2𝑓(𝑥; 𝜃, 𝛾)

𝑑𝑡2
< 0, 

 

 

then, ∀𝜃, 𝛾 > 0, 𝑥 =
(1−𝛾)𝜃−𝜃𝛾

(1−𝛾)𝜃²
 is the unique critical point which maximize the PDF (ref:PDF) and the PDF is 

unimodel. 

Therefore, the mode of TPFD is defined as follows 

𝑀∗ =
1 − 2𝛾

(1 − 𝛾)𝜃
. 

If (1 − 𝛾)𝜃 − 𝜃𝛾 < 0, the PDF is decreasing, the mode will be 

𝑀∗ =
𝛾𝜃²

𝜃𝛾 + (1 − 𝛾)𝜃
= 𝛾𝜃. 

 

 

Proposition 2. Let ℎ(𝑥; 𝜃, 𝛾) be the hazard rate function of of the TPFD. Then ℎ(𝑥; 𝜃, 𝛾) increasing. 

 

Proof. The first derivative of ℎ(𝑥; 𝜃, 𝛾) is 

𝑑ℎ(𝑥; 𝜃, 𝛾)

𝑑𝑥
=

𝜃²(1 − 𝛾)²𝜃²

((1 − 𝛾)𝜃²𝑥 + 𝜃𝛾 + (1 − 𝛾)𝜃)²
=

(1 − 𝛾)²𝜃⁴

((1 − 𝛾)𝜃²𝑥 + 𝜃)²
=

(1 − 𝛾)²𝜃²

(1 − 𝛾)𝜃𝑥 + 1)²
 

 

It is easy to check that ℎ(𝑥; 𝜃, 𝛾) is an increasing function. 
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Moments and related measures of NTPFD 

Let 𝑋 ∼ 𝑁𝑇𝑃𝐹𝐷, Then the i th moment of X is determined as follows 

𝐸(𝑋𝑖) =
𝛤(1 + 𝑖)

𝜃2+𝑖
[𝜃𝛾 + (1 − 𝛾)𝜃(1 + 𝑖)] 

 

Hence, the first four moments of the 𝑁𝑇𝑃𝐹𝐷 random variable can be found by substituting 

i=1,2,3,4, respectively, in above equation. They are used to determine variance, Skewness, 

Kurtosis and coefficient of variation of 𝑁𝑇𝑃𝐹𝐷, respectively, as follows 
 

𝑉𝑎𝑟(𝑋)   =  𝐸(𝑋²) − 𝐸(𝑋) =
2𝛾𝜃³ + 6(1 − 𝛾)𝜃³ − 𝛾²𝜃²− 4𝛾(1 − 𝛾)𝜃²− 4(1 − 𝛾)²𝜃²

𝜃⁶
 

=
 (6𝜃 − 4)(1 − 𝛾) + 𝛾(2𝜃 − 𝛾)

𝜃⁴
, 

𝑆𝑘𝑒𝑤𝑛𝑒𝑠𝑠 = √(𝛽₁) =
𝐸(𝑋³)

𝑉𝑎𝑟(𝑋)3/2
=

6𝜃⁴(4(1 − 𝛾)𝜃 + 𝛾𝜃)

(2𝛾𝜃³ + 6(1 − 𝛾)𝜃³− 𝛾²𝜃²− 4𝛾(1 − 𝛾)𝜃²− 4(1 − 𝛾)²𝜃²)3/2
 

 

𝐾𝑢𝑟𝑡𝑜𝑠𝑖𝑠 = 𝛽₂ =
𝐸(𝑋⁴)

(𝑉𝑎𝑟(𝑋))²
/(()) =

(24𝜃⁶(5(1 − 𝛾)𝜃 + 𝜃𝛾)

(2𝛾𝜃³+ 6(1 − 𝛾)𝜃³− 𝛾²𝜃²− 4𝛾(1 − 𝛾)𝜃²− 4(1 − 𝛾)²𝜃²)²),
 

 

𝐶. 𝑉  =  𝐾 =
√𝑉𝑎𝑟(𝑋)

𝐸(𝑋)
=

√2𝛾𝜃³+ 6(1 − 𝛾)𝜃²− 𝛾²𝜃²− 4𝛾(1 − 𝛾)𝜃²− 4(1 − 𝛾)²𝜃²

2(1 − 𝛾)𝜃 + 𝜃𝛾)
 

=  
√2𝛾𝜃 + 6(1 − 𝛾) − 𝛾²− 4𝛾(1 − 𝛾) − 4(1 − 𝛾)²

2 − 𝛾
 

The moment generating function of the 𝑇𝑃𝐹𝐷 is determined as follows 

𝑀(𝑠) =  ∫ 𝑒𝑠𝑥 𝑓(𝑥)𝑑𝑥 =
𝜃2((1 − 𝛾)𝜃 + 𝜃𝛾 − 𝑠𝛾)

((1 − 𝛾)𝜃 + 𝛾𝜃)(𝜃 − 𝑠)2
, 𝑠 < 𝜃 

=
𝜃(𝜃 − 𝑠𝛾)

(𝜃 − 𝑠)²
 

its characteristic function is obtained by replacing t with it in the last equation. 

The ith incomplete moments of TPFD is determined as follows 

 

𝑇𝑖(𝑠) = ∫ 𝑡𝑖
𝑠

0

𝑓(𝑥)𝑑𝑥 =
(1 − 𝛾)𝜃𝛤(2 + 𝑖) + 𝜃𝛾𝛤(1 + 𝑖) − (1 − 𝛾)𝜃𝛤(2 + 𝑖, 𝑠𝜃𝛾) − 𝛾𝜃𝛤(1 + 𝑖, 𝑠𝜃𝛾)

𝜃𝑖(1 − 𝛾)𝜃 + 𝛾𝜃𝑖+1
 

 

where 𝛤(𝛼, 𝑥) = ∫ 𝑡𝛼−1∞

−𝑥
𝑒−𝑡𝑑𝑡. We have first incomplete moments 𝑇₁(𝑠) in above equation when 𝑖 = 1 which 

used to calculate the mean residual life and the mean waiting time which is, respectively, defined as follows 

𝛹(𝑠) =
1 − 𝑇₁(𝑠)

𝑆(𝑥; 𝜃, 𝛾) − 1
 

𝑀₁(𝑠) =
1 − 𝑇₁(𝑠)

𝐹(𝑥; 𝜃, 𝛾)
 

 

Another uses of 𝑇₁(𝑠) is to calculate Bonferroni and Lorenz curves which are, respectively, defined as follows 

𝐿(𝑝) =
𝑇₁(𝑥)

𝐸(𝑋)
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𝐵(𝑝) =
𝑇₁(𝑥𝑝)

𝑝𝐸(𝑋)
, 

 

Where(𝑥𝑝)  is the quantile function of NTPFD. 

 

Stochastic orders 

Stochastic Order is an order of -largeness -on random variables. More broadly, stochastic 

orders are orders that are used to compare random variables, or probability distributions or 

measurements. 

Now, we consider 2 random variables V and W . Then V is said smaller than W in the : 

-  Likelihood ratio order (𝑉 <𝑙𝑟 𝑊), 𝑖𝑓
𝑓𝑣(𝑥)

𝑓𝑤(𝑥)
 is decreasing in x 

-Hazard rate order (𝑉 ≤ℎ𝑟 𝑊), 𝑖𝑓ℎ𝑣(𝑥) ≥ ℎ𝑤(𝑥), ∀𝑥 

- Stochastic order (𝑉 <𝑆 𝑊 ), 𝑖𝑓𝐹𝑣(𝑥) < 𝐹𝑤(𝑥), ∀𝑥 

- Convex order (𝑉 ≤𝑐𝑥 𝑊), if for all convex functions 𝜙, 𝐸[𝜙(𝑉)] ≤ 𝐸[𝜙(𝑊)](expectation exist). 

 

Theorem 1.Let 𝑉, 𝑊 ∼ 𝑇𝑃𝐹𝐷 be two random variables. If 

(1 − 𝛾₁)𝜃₁𝛾₂ ≤ (1 − 𝛾₂)𝜃₂𝛾₁  , 𝑎𝑛𝑑𝜃₁ ≥ 𝜃₂ then:𝑉 <𝑙𝑟 𝑊;  𝑉 <ℎ𝑟 𝑊;  𝑉 <𝑠 𝑊𝑎𝑛𝑑𝑉 ≤𝑐𝑥 𝑊 

Proof. We have: 

𝑓𝑣(𝑥)

𝑓𝑤(𝑥)
=

𝜃₁²(𝛾₁+(1−𝛾₁)𝜃₁𝑡)𝑒𝑥𝑝(−𝜃₁𝑡))

𝛾₁+(1−𝛾₁)𝜃₁𝑡

𝜃₂²(𝛾₂+(1−𝛾₂)𝜃₂𝑡)𝑒𝑥𝑝(−𝜃₂𝑡)

𝛾₂+(1−𝛾₂)𝜃₂𝑡

 

 

To keep it simple, we use 𝑙𝑛
𝑓𝑣(𝑥)

𝑓𝑤(𝑥)
, which we find after derivation: 

 

𝑑

𝑑𝑥
𝑙𝑛

𝑓𝑣(𝑥)

𝑓𝑤(𝑥)
=

(1 − 𝛾₁)𝜃₁𝛾₂ − (1 − 𝛾₂)𝜃₂𝛾₁

(𝛾1 + (1 − 𝛾1)𝜃1𝑡) + (𝛾₂ + (1 − 𝛾₂)𝜃₂𝑡)
− (𝜃₁ − 𝜃₂) 

 

In this regard, if 𝜃₁𝛾₂ ≤ 𝜃₂𝛾₁𝑎𝑛𝑑𝜃₁ ≥ 𝜃₂ , we have
𝑑

𝑑𝑥
ln (

𝑓𝑣(𝑥)

𝑓𝑤(𝑥)
) ≤ 0 . It means that 

𝑉 <𝑙𝑟 𝑊. Moreover, we know that 𝑉 <𝑙𝑟 𝑊⇒𝑉 <ℎ𝑟 𝑊⇒𝑉 <𝑠 𝑊 and 𝑉 ≤𝑐𝑥 𝑊⇔𝑉 <𝑆 𝑊(𝑖𝑓𝐸[𝑉] = 𝐸[𝑊]), 

which the Theorem 1is proved. 

 

Entropies 

There is general agreement that entropy 

and information can be used to calculate 

the degree of uncertainty in a probability 

distribution. However, many correlations 

have been generated from the 

characteristics of entropy. The entropy of a 

random variable X is a measurement of the 

variability of uncertainty. The entropy of 

Rényi is defined as: 
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𝐼𝑅(𝑠) =
1

(1 − 𝑠)
𝑙𝑜𝑔 ∫ 𝑓𝑠

∞

0

(𝑥)𝑑𝑥 

Were s(integer)>0 et s≠1. For the NTPFD, we have: 

𝐼𝑅(𝑠) =
1

(1 − 𝑠)
log (∫

𝜃²(𝛾 + (1 − 𝛾)𝜃𝑥)exp (−𝜃𝑥))

𝛾𝜃 + (1 − 𝛾)𝜃⬚

∞

0

)

𝑠

𝑑𝑥) 

=  
1

(1 − 𝑠)
log (∫

𝜃𝑠²

(𝛾𝜃 + (1 − 𝛾)𝜃)𝑠
(𝛾 + (1 − 𝛾)𝜃𝑥)𝑠𝑒−𝜃𝑥𝑠𝑑𝑥

∞

0

) 

 

We observe that 

∫
𝜃𝑠²

(𝛾𝜃 + (1 − 𝛾)𝜃)𝑠
(𝛾 + (1 − 𝛾)𝜃𝑥)𝑠𝑒−𝜃𝑥𝑠𝑑𝑥 =

∞

0

𝜃𝑠²

(𝛾𝜃 + (1 − 𝛾)𝜃)𝑠
∑

𝑛! (𝛾)𝑖((1 − 𝛾)𝜃)𝑛−𝑖

(𝑛 − 𝑖)! 𝑖!

𝑛

𝑖=0

∫ 𝑥𝑛−𝑖
∞

0

𝑒−𝜃𝑥𝑠𝑑𝑥 

 

where 

∫ 𝑥𝑛−𝑖
∞

0

𝑒−𝜃𝑥𝑠𝑑𝑥 =
−1

𝑠𝜃
𝛤(𝑛 + 1 − 𝑖, 𝑠𝜃𝑥)(𝑠𝜃)𝑖−𝑛 

 

Now, the Rényi entropy observes as 

𝐼𝑅(𝑠) =
1

(1 − 𝑠)
𝑙𝑜𝑔 (

𝜃𝑠²

(𝛾𝜃 + (1 − 𝛾)𝜃)𝑠
∑

𝑛! (𝛾)𝑖((1 − 𝛾)𝜃)𝑛−𝑖

(𝑛 − 𝑖)! 𝑖!

𝑛

𝑖=0

(𝑠𝜃)𝑖−𝑛𝛤(𝑛 − 𝑖 + 1)

(𝑠𝜃)𝑛−𝑖
). 

 

Quantile Function 

It may be noted that 𝐹(𝑥; 𝜃, 𝛾) is continuos and strictly increasing, so we for the quantile function of T is 

defined: 

𝑄𝑋(𝑢) = 𝑥𝑢 = 𝐹⁻¹(𝑢; 𝜃, 𝛾),             𝑢⍷[0.1] 

For 𝑢 = 𝐹(𝑥; 𝜃, 𝛾) , we give an explicit expression for 𝑄𝑋(𝑢) in terms of the Lambert W fuction in the following 

theorem and results. 

 

Theorem 2. For any θ,γ>0 , the 𝑄𝑋(𝑢)of the NTPFD is 

𝑄𝑋(𝑢)   =  𝑥𝑢 =
−𝛾𝜃 − (1 − 𝛾)𝜃 − 𝑊₋₁((𝑢 − 1)(𝛾𝜃 + (1 − 𝛾)𝜃)𝑒−(𝛾𝜃+(1−𝛾)𝜃)

(1 − 𝛾)𝜃²
                , 𝑢⍷[0.1] 

=  
−𝛾 − (1 − 𝛾) − 𝑊₋₁((𝑢 − 1)(𝛾 + (1 − 𝛾))𝑒−(𝛾𝜃+(1−𝛾)𝜃)

(1 − 𝛾)𝜃
 

=  
−1 − 𝑊₋₁((𝑢 − 1)𝑒−𝜃 )

(1 − 𝛾)𝜃
 

Where W₋₁ is the negative branch . 

Proof. For any 𝜃 > 0,0 < 𝛾 < 1 𝑙𝑒𝑡 0 < 𝑢 < 1.We will solve the equation 𝐹TPFD(t) with respect to x, by 

following the steps bellow: 
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𝑒−𝜃𝑥(𝜃𝛾 + (1 − 𝛾)𝜃 + (1 − 𝛾)𝜃²𝑥) = (𝜃)(1 − 𝑢).        (∗) 

We multipling the both sides by [−𝑒𝑥𝑝 − (𝜃)] of the equ(*) , we get : 

−𝑒−𝜃𝑡−(𝛾𝜃+(1−𝛾)𝜃)(𝜃𝛾 + (1 − 𝛾)𝜃 + (1 − 𝛾)𝜃2𝑡) = (𝑢 − 1)(𝜃𝛾 + (1 − 𝛾)𝜃)𝑒(−𝜃) 

 

By using the definition of Lambert W function (𝑊(𝑧)𝑒𝑥𝑝(𝑊(𝑧)) = 𝑧), we observe that −(𝜃 + (1 − 𝛾)𝜃²𝑡) is 

the Lambert W function of the real argument(𝑢 − 1)(𝜃)𝑒−(𝛾𝜃+(1−𝛾)𝜃). So, we have: 

𝑊((𝑢 − 1)(𝜃𝛾 + (1 − 𝛾)𝜃)𝑒−(𝛾𝜃+(1−𝛾)𝜃)) =  −(𝜃𝛾 + (1 − 𝛾)𝜃 + (1 − 𝛾)𝜃²𝑡). 

=  (𝜃 + (1 − 𝛾)𝜃2𝑡)(∗∗) 

 

In addition, for any 𝜃, 𝛾, 𝑡 > 0 it's obviously that 𝜃 + (1 − 𝛾)𝜃²𝑡 > 0 and it also checked that (𝑢 − 1)(𝜃𝛾 +

(1 − 𝛾)𝜃)𝑒(−𝜃)𝜀(−𝑒⁻¹, 0) since 0< 𝑢 < 1. Since , by taking into account the properties of the negative branch 

W₋₁ of the Lamber W function, son the equ above(**) become: 

𝑊₋₁((𝑢 − 1)(𝜃𝛾 + (1 − 𝛾)𝜃)𝑒(−𝜃)   )  =  −(𝜃𝛾 + (1 − 𝛾)𝜃 + (1 − 𝛾)𝜃²𝑡) 

=  −(𝜃 + (1 − 𝛾)𝜃²𝑡). 

This in turn means the result that given before in Theorem 2 is complete. 

 

4. Fuzzy reliability 

Let X is a continuous random variable that represents a system's failure time (component). 

The fuzzy dependability can then be calculated using the fuzzy probability in formula (see 

Chen et al. (2001)). 

𝑅𝐹(𝑡) = 𝑃(𝑇 > 𝑡) = ∫ 𝜇(𝑥)𝑓𝑁𝑇𝑃𝐹𝐷

∞

𝑡

(𝑥)𝑑𝑥, 0 ≤ 𝑡 ≤ 𝑥 < ∞, 

 

where μ(x)  is a membership function that describes the degree to which each element of a given universe 

belongs to a fuzzy set. Now, assume that μ(x)  is 

μ(x) =  {

0                   ,      x ≤ t₁
(x − t₁)

(t₂ − t₁)
, 0 ≤ t₁ < 𝑥 < 𝑡

1                      , x ≥ t₂

 

For 𝜇(𝑥),  by the computational analysis of the function of fuzzy numbers, the lifetime 𝑥(𝛼)  can be obtained 

corresponds to a certain value of 𝛼 − 𝐶𝑢𝑡, 𝛼 ∈ [0,1], can by obtained as: 𝜇(𝑥) = 𝛼 →
𝑥−𝑡₁

𝑡₂−𝑡₁
= 𝛼, then 

{

x(α) ≤ 𝑡1                ,   α = 0

x(α) =  𝑡1 + γ(𝑡2 − 𝑡1)   ,0 < α < 1     

x(α) ≥ 𝑡2 , α = 1

 

 

As a result, the fuzzy reliability values may be determined for all α values. The fuzzy dependability of the 

NTPFD is determined by the fuzzy reliability definition. The fuzzy reliability of the NTPFD can be define as, 

𝑅𝐹(𝑡) = (1 + (1 − 𝛾)𝜃𝑡₁)𝑒−𝜃𝑡₁ − (1 + (1 − 𝛾)𝜃𝛼)𝑒−𝛼𝜃 

Then 𝑅𝐹(𝑡)𝛼=0 = 0. 
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5. Applications: real data analysis 

Two applications are now proposed to 

illustrate the usefulness of the proposed 

model. More precisely, we explore the 

tuning behavior of the NTPLD compared to 

two-parameter Lindley (Shanker and 

Ghebretsadik 2013) , Quasi Lindley 

(Benatmane et al.2021),  Power XLindley 

(Meriem et al.2022), TPQED (Boussaba et 

al.2024) distributions. For this, we estimate 

the unknown parameters of the respective 

model using the maximum likelihood 

method and consider their corresponding 

standard errors (SE), the estimated log 

likelihoods ( - 2logL), the values of AIC 

(Akaike information 

criterion)AICC(Akaike information 

criterion correction) ,and BIC (Bayesian 

information criterion). 

Data Set 1: The data set 1 represents an 

uncensored data set corresponding to 

remission times (in months) of a random 

sample of 128 bladder cancer patients 

reported by Lee and Wang (2003) 

    0.08, 2.09, 3.48, 4.87, 6.94, 8.66, 13.11, 

23.63, 0.20, 2.23, 3.52, 4.98, 6.97, 9.02, 

13.29, 0.40, 2.26, 3.57, 5.06, 7.09, 9.22, 

13.80, 25.74, 0.50,  2.46, 3.64, 5.09, 7.26, 

9.47, 14.24, 25.82, 0.51, 2.54, 3.70, 5.17, 

7.28, 9.74, 14.76, 26.31, 0.81, 2.62, 3.82, 

5.32, 7.32, 10.06, 14.77, 32.15, 2.64,3.88, 

5.32, 7.39, 10.34, 14.83, 34.26, 0.90, 2.69, 

4.18, 5.34, 7.59, 10.66, 15.96, 36.66, 1.05, 

2.69, 4.23, 5.41, 7.62, 10.75, 16.62, 43.01, 

1.19, 2.75, 4.26, 5.41, 7.63, 17.12, 46.12, 

1.26, 2.83, 4.33, 5.49, 7.66, 11.25, 

17.14,79.05, 1.35, 2.87, 5.62, 7.87, 11.64, 

17.36, 1.40, 3.02, 4.34, 5.71, 7.93,11.79, 

18.10, 1.46, 4.40, 5.85, 8.26, 11.98, 19.13, 

1.76, 3.25, 4.50, 6.25,8.37, 12.02, 2.02, 

3.31, 4.51, 6.54, 8.53, 12.03, 20.28, 2.02, 

3.36, 6.76,12.07, 21.73, 2.07, 3.36, 6.93, 

8.65, 12.63, 22.69. 

 

Model  θ γ AIC BIC -2LL AICC 

two-parameter 

Lindley 

0.1283 30.1556 833.328 839.0321 829.328 833.424 

Quasi Lindley 0.31603 0.041835 1196.427 1202.131 1192.427 1196.523 

Power XLindley 1.3886 0.261294 1127.513 1133.217 1123.513 1127.609 

TPQED 0.18857 88.3213 841.4313 847.1353 837.4313 841.5273 

NTPFD 0.10698 0.997623 833.2282 838.9322 829.2282 833.3242 

 

Data set 2:    This data set gives the 

population of the United States (in millions) 

as recorded by the decennial census for the 

period 1790--1970(McNeil (1977)). 3.93, 

5.31, 7.24, 9.64, 12.90, 17.10, 23.20, 31.40, 

39.80, 50.20, 62.90, 76.00, 92.00, 105.70, 

122.80, 131.70, 151.30, 179.30, 203.20 

 

Model  θ γ AIC BIC -2L AICC 

two-parameter 
Lindley 

0.021668 44.2597 203.7026 205.5914 199.7026 204.4526 

Quasi Lindley 0.04057 0.20435 336.5028 338.3917 332.5028 337.2528 

New quasi 

Lindley 

0.02478 0.0010298 204.5499 206.4388 200.5499 205.2999 

Power XLindley 1.0557 0.19355 251.3029 253.1917 247.3029 252.0529 

TPQED 0.04027 94.2316 214.4968 216.3856 210.4968 215.2468 

NTPFD 0.01387 0.997565 203.4288 205.3177 199.4288 204.1788 

 

6. Conclusion 

In this paper we have shown how 

probability distributions can be constructed 

without adding additionalparametersor 

using the usual generalizations techniques. 

The proposed distribution is called the 

TPFD. It can be seen that the TPFD has 

many desirable properties. We have derived 

precise and explicit expressions for many 

characteristics, inparticular moments, 

reliability parameters and asymptotic 

distributions of order statistics. Inaddition, 

TPFD, two-parameter L1, Quasi Lindley, 

Power XLindley, and TPQEDdistributions 
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were fitted to two real data sets; and the 

results showed that the TPFD distribution is 

a strong candidatewithtwoparameter 

distribution. 
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