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Abstract 

This paper introduces a new one-parameter family (NPFD) derived from the cumulative distribution function 

(CDF). We study the main properties of the proposed family, with a special emphasis on its moments, reliability 

parameters, and asymptotic distributions of the extreme order statistics. Then, inferential considerations are 

explored. We discuss the parameter estimation by the moments, maximum likelihood methods and the Bayesian 

estimation. Also, likelihood estimation and Bayesian estimation using the Pitman asymptotic criterion are given. 

Three applications reveal that the new model can fit well practical data sets. 
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1. Introduction 

Statistical models can be used to describe 

and predict real-world events. In recent 

years, many different types of distributions 

have been used to model data in many 

different fields. Recent advances have 

focused on establishing new families that 

extend well-known distributions while 

allowing great flexibility in modeling real-

world data. Several distributions have been 

proposed in the statistical literature to 

modify lifespan data, including the Lindley 

(1958), Exponential, Gamma, Weibull, 

Zeghdoudi (Messaadia and Zeghdoudi, 

2018), Xgamma (Sen et al., 2016), 

XLindley (Chouia and Zeghdoudi, 2021), 

New polynomial exponential (Beghriche et 

al., 2022), new XLindley (Khodja et al., 

2023), ZLindley (2024) and squared 

ZLindley (Lazri et al., 2024) distributions. 

In this paper, we study a new one-parameter 

family (NPFD) that includes the new 

XLindley distribution in special case. 

Existing literature on survival data 

modeling, biosciences, and actuarial 

science will benefit from this new 

distribution group. Suppose T is a random 

variable whose values fall between [0, +∞] 

and whose distribution is dependent upon an 

unknown parameter θ has values within the 

range [0, +∞], and this is how its cumulative 

distribution function (CDF) is written, 

 

FNPFD (t; θ) = 1-e−c(θ)t [a (θ) α (t)]             (1) 

 

where a(θ) and c(θ) are real-valued functions on [0, +∞] and α (t) depend on t and θ. 

 

We can verify that the C D F is a 

right continuous function right away, 

and check α (t) for the necessary 

criteria to make f NPFD a distribution.  

The following is the format of this 

research paper: 

Section 2 covers survival and 

hazard functions, moments, and other 

statistical properties. Sections 3 and 4 

consider the estimation of maximum 

likelihood distribution parameters. 

Section 5 compares likelihood and 

Bayesian estimation using the Pitman 

asymptotic criterion. Finally, three 

specific applications demonstrate the 

superior performance of the new 

family of models (NPFD) over the 

exponential distributions, Lindley, 

Zeghdoudi, XLindley, Xgamma, and 

new XLindley. 

 

2.Some Statistical Properties of NPFD 

 

Proposition 1. The FNPFD(t;θ)in(1)of the NPFD is according to: 

1. FNPFD (0,θ)=0ifα(0)=
1

α(𝜃)
 

2. FNPFD (∞,θ)=1if lim
𝑡→∞

𝑎(𝑡)𝑒
−𝑐(𝜃)𝑡

=0 

3. FNPFD (t;θ)increasing𝑖𝑓(𝑐(𝜃) − α′(𝜃)) > 0 

 

Proof. 

1. We have: FN PFD(0,θ)=1 − 𝑎(𝜃)𝑎(0) 

By equating to zero and solving it with respect to t, we find:α(t)= 
1

α(𝜃)
 

2. Since: lim
𝑡→∞

𝑎(𝜃)𝑒
−𝑐(𝜃)𝑡

= 0, as well as being: 

lim
𝑡→∞

1 − 𝑎(𝜃)𝑒
−𝑐(𝜃)𝑡

− 𝑎(𝑡)𝑒
−𝑐(𝜃)𝑡

= 1 
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we inserted lim
𝑡→∞

𝑎(𝜃)𝑒
−𝑐(𝜃)𝑡

= 0 

3. The first derivatives of the P D F in (1) is determined as follows: 

𝑑𝐹𝑁𝑃𝐹𝐷

𝑑𝑡
= 𝑎(𝜃)𝑒

−𝑐(𝜃)𝑡

[𝑐(𝜃)𝑎(𝑡) − α′(𝑡)]        (2) 

In order for 
𝑑𝐹𝑁𝑃𝐹𝐷

𝑑𝑡
 to be positive, we interpret as (𝑐(𝜃)𝑎(𝑡) − α′(𝑡)) > 0  (3). 

 

2.1. Sub general cases 

This family’s inclusion of many 

selections of 𝑎(𝑡) that are documented in 

the literature s the ensuing a special 

cases are one of its most significant 

benefits, for examples: 

 

1) 𝑎(𝑡) = 𝑠(𝑡) ; with 𝑠(𝑡) is a survival function due to 𝑠(𝑡) = 1 − 𝐹(𝑡) hence: 

𝑠′(𝑡) = −𝑓(𝑡)so𝑎′(𝑡) < 0 

2) Decreasing fractional or polynomials functions. 

3) By equating the linear differential equation of first order in Eq. (3) to zero and solving it 

with respect to t, we obtain the following solution: 

𝑎(𝑡) = 𝑘𝑒𝑐(𝜃)𝑡; 𝑘 ∈ 𝑅 

In this paper, we’re going to study the case where𝑎(𝑡) = 𝑆𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑(𝑡); We get: 

 

𝑓𝑁 𝑃 𝐹 𝐷(𝑡) = 𝑎(𝜃)𝑒
−𝑐(𝜃)𝑡

⌈𝑐(𝜃)𝑠𝑠(𝑡) + 𝑓𝑠(𝑡)⌉          (4) 

 

 

A. Mode 

This subsection addresses the N P F D PDF’s shape properties in (4) at t=0 and t=∞, 

respectively, 

 

lim
𝑡→0

𝑓𝑁 𝑃 𝐹 𝐷(𝑡) = 𝑐(𝜃) + 𝑎(𝜃)𝑙(𝜃)𝑤𝑖𝑡ℎ 𝑙(𝜃) = lim
𝑡→0

𝑓𝑠(𝑡) 

Lim
𝑡→∞

= 𝑓𝑁𝑃𝐹𝐷(𝑡) = 0 

Proposition 2. 

The PDF𝑓(𝑡; 𝜃) in (4) of the N P F D is decreasing if  

𝑐(𝜃)[𝑐(𝜃)𝑠𝑠(𝑡) + 2𝑓𝑠(𝑡)] −
𝑑𝑓𝑠

𝑑𝑡
> 0 

And
𝑑2𝑓𝑠

𝑑𝑡
> 0 𝑖𝑓𝑐(𝜃)3𝑠𝑠(𝑡) + 3𝑐(𝜃)2𝑓𝑠(𝑡) − 3𝑐(𝜃)

𝑑𝑓𝑠

𝑑𝑡
+

𝑑2𝑓𝑠

𝑑𝑡
> 0 

 

Proof. The following is the determination of the PDF’s first and second derivatives 

in equation (4): 

 

 ( )( ) ( ) ( ) ( ) 2 ( )c tNPFD s
s s

df df
a e c c s t f t

dt dt

  −  
= − + − 

 
 

2 2
( ) 3 2

2
( ) ( ) ( ) 3 ( ) ( ) 3 ( )c tNPFD s s

s s

d f df d f
a e c s t c f t c

dt dt dt

   −  
= + − + 

 
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B. Survival and hazard functions 

The survival functions SN P F D(t) and hazard rate function (hr f) h N P F D (t) for the N P D 

F are, respectively, defined as follows: 
( )( ) 1 ( ) ( ) ( ) c t

NPFD NPFD sS t F t a s t e  −= − =       (5) 

ℎ𝑁 𝑃 𝐹 𝐷(𝑡) =
𝑓𝑁𝑃𝐹𝐷(𝑡)

𝑆𝑁 𝑃 𝐹 𝐷(𝑡)
= 𝑐(𝜃) +

𝑓𝑠(𝑡)

𝑆𝑠(𝑡)
= 𝑐(𝜃) + ℎ𝑠(𝑡)                (6) 

 

C. Moments and related measures of the NPFD 

Corollary1. 

Let 𝑇~𝑁𝑃𝐹𝐷. Then, the 𝑖 the moment of T is determined as follows: 

𝜇𝑝 = 𝐸[𝑇𝜏] = ∫ 𝑡𝜏
∞

0

𝑓𝑁 𝑃 𝐹 𝐷(𝑡)𝑑𝑡 

= ∫ 𝑡𝜏
∞

0

𝑎(𝜃)𝑒
−𝑐(𝜃)𝑡

[𝑐(𝜃)𝑠𝑠(𝑡) + 𝑓𝑠(𝑡)]𝑑𝑡 

= 𝜔(𝜃) + 𝛽(𝜃) ∫ 𝜏(𝜏 + 1; 𝑡𝑐(𝜃))[𝑐(𝜃)𝑓𝑠(𝑡) + 𝑓′
𝑠(𝑡)]

∞

0

𝑑𝑡 

Where: ∫ 𝑡𝜏∞

0
𝑒

−𝑐(𝜃)𝑡

=
−1

𝑐(𝜃)𝜏+1 𝜏(𝜏 + 1; 𝑡𝑐(𝜃))𝑎𝑛𝑑𝜔(𝜃) =
𝑎(𝜃)𝜏(𝜏+1)[𝑐(𝜃)𝑠𝑠(0)+𝑓𝑠(0)

𝑐(𝜃)𝜏+1  

and 𝛽(𝜃) =
𝑎(𝜃)

𝑐(𝜃)𝜏+1 

 

Using Eq (7), one may calculate the first 

four moments of the N P F D random 

variable by entering the values 𝑖 = 1,2,3,4. 
These moments are then used to 

calculate a number of statistical 

measures, including the coefficient of 

variation, skewness, kurtosis, and 

variance of N P F D, in that order: 

 

𝑉𝑎𝑟 [𝑋] = 𝐸[𝑋2] − 𝐸[𝑋]2 

Where 𝐸[𝑋2] = 𝛾(𝜃)[𝜎(𝜃) + ∫ 𝜏(3; 𝑡𝑐(𝜃))[𝑐(𝜃)𝑓𝑠(𝑡) + 𝑓′
𝑠(𝑡)]

∞

0
 

       With 𝛾(𝜃) =
𝑎(𝜃)

𝑐(𝜃)3 and 𝜎(𝜃) = 2[𝑐(𝜃)𝑠𝑠(0) + 𝑓𝑠(0)] 

𝑆𝑘𝑒𝑤𝑛𝑒𝑠𝑠 = √𝛽1 =
𝐸[𝑋3]

[𝑉𝑎𝑟(𝑋)]
3
2

 

Where 𝐸[𝑋3] = 𝑘(𝜃)[𝑀(𝜃) + ∫ 𝜏(4; 𝑡𝑐(𝜃))[𝑐(𝜃)𝑓𝑠(𝑡) + 𝑓′
𝑠(𝑡)]𝑑𝑡]

∞

0
 

        With𝑘(𝜃) =
𝑎(𝜃)

𝑐(𝜃)4
 and 𝑀(𝜃) = 6[𝑐(𝜃)𝑠𝑠(0) + 𝑓𝑠(0)] 

𝑘𝑢𝑟𝑡𝑜𝑠𝑖𝑠 = 𝐵2 =
𝐸[𝑋4]

[𝑉𝑎𝑟 [𝑋]]2
 

        Where 𝐸[𝑋4] = 𝐴(𝜃)[𝐻(𝜃) + ∫ 𝜏(5; 𝑡𝑐(𝜃))[𝑐(𝜃)𝑓𝑠(𝑡) + 𝑓′
𝑠(𝑡)]𝑑𝑡]

∞

0
 

        With 𝐴(𝜃) =
𝑎(𝜃)

𝑐(𝜃)5 and𝐻(𝜃) = 120 [𝑐(𝜃)𝑠𝑠(0) + 𝑓𝑠(0)] 

 

3. Specific Case 

As a specific example of (4), our 

suggested model is obtained as follows, 

We’ll put the probability function (pdf) 

of new XLindley distribution (N X L D) 

(see Khodja et al. 2023) defined as: 
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𝑓𝑠(𝑡) = 𝑓𝑁𝑋𝐿(𝑥) =
𝜃

2
(1 + 𝜃𝑥)𝑒−𝜃𝑥, 𝑥  , 𝜃 > 0 and its related survival function 

𝑆𝑁𝑋𝐿(𝑥) given by: 𝑆𝑠(𝑥) = 𝑆𝑁𝑋𝐿(𝑥) = (
1

2
𝜃𝑥 + 1)𝑒−𝜃𝑥 

With 𝑎(𝜃) = 1; 𝑐(𝜃) = 𝜃 

We obtain; 

𝑓𝑁𝑃𝐹𝐷(𝑥, 𝜃) =
𝜃

2
(2𝜃𝑥 + 3)𝑒−2𝜃𝑥𝑥, 𝜃 > 0      (8) 

 Then the cumulative distribution function (cdf) of the N P F D: 

𝐹𝑁𝑃𝐹𝐷(𝑥, 𝜃) = 1 − (
1

2
𝜃𝑥 + 1)𝑒−2𝜃𝑥𝑥, 𝜃 > 0 (9) 

Therefore, the survival function 𝑆𝑁𝑃𝐹𝐷(𝑥) and hazard rate function ℎ𝑁𝑃𝐹𝐷(𝑥) for the N P 

FD are respectively defined as follows: 

𝑆𝑁𝑃𝐹𝐷(𝑥) = 1 − 𝐹𝑁(𝑥, 𝜃) = (
1

2
𝜃𝑥 + 1)𝑒−2𝜃𝑥𝑥, 𝜃 > 0   (10) 

ℎ𝑁𝑃𝐹𝐷(𝑥) = 𝜃 + ℎ𝑁𝑋𝐿(𝑥) =
3𝜃+2𝜃2𝑥

𝜃𝑥+2
𝑥, 𝜃 > 0   (11) 

Furthermore, the 𝑟th moment of the N P D F is defined as follows: 

𝜇𝑟 =  𝐸[𝑋𝑟] = ∫ 𝑥𝑟𝑓𝑁 𝑃 𝐹 𝐷(𝑥, 𝜃)𝑑𝑥 = ∫ 𝑥𝑟
∞

0

∞

0

𝜃

2
(2𝜃𝑥 + 3)𝑒−2𝜃𝑥𝑑𝑥

=
1

4(2𝜃)𝑟
[𝜏(𝜏 + 2) + 3𝜏(𝜏 + 1)]              (12) 

Where 𝜏(𝑧) = ∫ 𝑥𝑧−1𝑒−𝑥𝑑𝑥
∞

0
 

 

Proposition3. Let X~𝑁𝑃𝐹𝐷 , the mean, variance, coefficients of variation, skewness, 

and kurtosis for X are respectively defined as follows: 

𝐸[𝑋] =
5

8𝜃
          ,         𝑉𝑎𝑟[𝑋] =

23

64𝜃2     Where 𝜏(𝑛) = (𝑛 − 1)! 

𝑆𝑘𝑒𝑤𝑛𝑒𝑠𝑠 = √𝛽1 =
𝐸[𝑋3]

[𝑉𝑎𝑟(𝑋)]
3
2

=

21
16𝜃2

(
3

4𝜃2)
3
2

=
7√3

2

6
= 2,0207 

𝑘𝑢𝑟𝑡𝑜𝑠𝑖𝑠 = 𝐵2 =
𝐸[𝑋4]

[𝑉𝑎𝑟 [𝑋]]2
=

3
𝜃4

(
23

64𝜃2)2
= 23,2287 

𝐶. 𝑉 = 𝜃 =
√𝑉𝑎𝑟 (𝑋)2

𝐸[𝑋]
=

√ 23
64𝜃2

2

5
8𝜃

=
√23
2

5
 

 

The new distribution is leptokurtic and right-skewed according to the skewness and kurtosis. 

Theorem 1. Let X~𝑁𝑃𝐹𝐷(𝜃). Then the median (X) < 𝐸(𝑋) 

     Proof. Let m~𝑚𝑒𝑑𝑖𝑎𝑛(𝑋) and 𝜇 = 𝐸(𝑋) =
5

8𝜃
 

Since the cumulative distribution function (c.d.f) is given by (9), it follows that 

𝐹(𝑚) =
1

2
 

and𝐹(𝜇) = 1 −
21

16
𝑒−

5

4 

     Note that 
1

2
< 1 −

21

16
𝑒−

5

4. Finally, since 𝐹𝑁𝑃𝐹𝐷(𝑥) is an increasing function in 𝑥 > 0 

for all 𝜃 > 0, we have 𝑚 < 𝜇. 
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4. Estimation of the Unknown 

Parameters 

In this part, we suggest analyzing the N 

P D F distribution in Eq. 8 using a Bayesian 

approach. For type II censored data, first, 

we offer the maximum likelihood (ML) 

estimation. Next, the Baysian estimation 

under the Linex, Entropy, and Generalized 

Quadratic (GQ) loss functions are 

discussed. 

4.1. Maximum likelihood estimation 

To estimate the parameter, we are 

interested in type II censored data. 

Assuming the n-sample (x1, x2, ….,xn),i.e, and 

a constant m, we may sat that the N P D F 

distribution generates the m-sample (x1, x2, 

….,xm). The following is this sample’s 

likelihood function: 

For𝑛, 𝑚 ∈ 𝑁 

𝐿(𝜃, 𝑋) = 𝐴 ∏ 𝑓𝑁 𝑃 𝐹 𝐷(𝑥, 𝜃)[1 − 𝐹𝑁 𝑃 𝐹 𝐷(𝑥𝑚)]𝑛−𝑚

𝑚

𝑖=1

 

Where 𝐴 =
𝑛!

(𝑛−𝑚)!
 

Replacing both (8) and (9) we have: 

𝐿(𝜃, 𝑋) = 𝐴 (
𝜃

2
) 𝑛(

𝜃𝑥𝑖

2
+ 1)𝑛−𝑚𝑒−2𝜃(∑ 𝑥𝑖

𝑚
𝑖=1 +(𝑛+𝑚)𝑥𝑖) ∏ (2𝜃𝑥𝑖 + 3)𝑚

𝑖=1            (13) 

      The equivalentlogarithmis : 

 

𝑙 = 𝑙(𝑥, 𝜃) = ln 𝐿(𝜃, 𝑋) 

𝑙 = ln 𝐴 + 𝑛(ln 𝜃 − ln 2) + (𝑛 − 𝑚) ln(
𝜃𝑥𝑖

2
+ 1) − 2𝜃(∑ 𝑥𝑖

𝑚
𝑖=1 + (𝑛 + 𝑚)𝑥𝑖) +

∑ (2𝜃𝑥𝑖 + 3)𝑚
𝑖=1                                                                                                            (14) 

 

The maximum likelihood estimator 𝜃𝑀𝐿𝐸  of the parameter 𝜃 is obtained from the solution 

of the following non-linear system. 

𝜃𝑀𝐿𝐸 =
𝜕𝑙

𝜕𝜃
=

𝑛

𝜃
+ (𝑛 − 𝑚)

𝑥𝑖

𝜃𝑥𝑖+2
− 2(𝑛 − 𝑚)𝑥𝑖 = 0                 (15) 

 

Since the system (15) solution appears to 

be intractable analytically, we will turn to 

numerical techniques to get approximate 

solution. Specifically, we will utilize the R 

package to derive the approximate value of 

the maximum likelihood estimator 𝜃𝑀𝐿𝐸of 

the parameter𝜃. 

A. Bayesian estimation 

We discuss the Bayesian estimation in 

this part. In this approach, we resume a prior 

distribution of the parameter to be estimated 

based on a piece of prior information, 

treating the unknown values as random 

variables. We make use of the non-

informative form of prior distribution for 

the parameter𝜃. 

 

𝜋(𝜃) =
1

𝜃
 

The prior distribution is: 

𝜋(𝜃/𝑋) =
𝜋(𝜃)𝐿(𝜃, 𝑋)

∫ 𝜋(𝜃)𝐿(𝜃, 𝑋)𝑑𝜃
∞

0

 

When estimating using Bayesian methods for type II censored data, we additionally use 

Eq (13) to read the posterior distribution, which is as follows: 

𝜋(𝜃/𝑋) =
𝐾

𝜃
(

𝜃

2
) 𝑛(

𝜃𝑥𝑖

2
+ 1)𝑛−𝑚𝑒−2𝜃(∑ 𝑥𝑖

𝑚
𝑖=1 +(𝑛+𝑚)𝑥𝑖) ∏ (2𝜃𝑥𝑖 + 3)𝑚

𝑖=1                  (14) 

Where: 
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𝑘 =
1

∫
𝐾
𝜃 (

𝜃
2) 𝑛(

𝜃𝑥𝑖

2 + 1)𝑛−𝑚𝑒−2𝜃(∑ 𝑥𝑖
𝑚
𝑖=1 +(𝑛+𝑚)𝑥𝑖) ∏ (2𝜃𝑥𝑖 + 3)𝑚

𝑖=1
∞

0

 

 

B. Estimators and their corresponding risks 

The three loss functions: Entropy, Generalized Quadratic, and Linex are described in the table 

below. 

loss function expression Bayes estimators posterior risk 

Entropy: 𝐿(𝜃, 𝛿) = (
𝛿

𝜃
)𝑝 − 𝑝 𝑙𝑜𝑔 (

𝛿

𝜃
) − 1 𝛿̂𝐸 = 𝐸𝜋(𝜃 − 𝑝)

−1
𝑝  𝑝[𝐸𝜋 (log 𝜃 − log(𝛿̂𝐸)))] 

Generalized quadratic: 𝐿(𝜃, 𝛿) = 𝜏(𝜃)(𝜃 − 𝛿)2 𝛿̂𝐺𝑄 =
𝐸𝜋(𝜏(𝜃)𝜃)

𝐸𝜋(𝜏(𝜃))
 𝐸𝜋(𝜏(𝜃)(𝜃 − 𝛿)2) 

Linex :𝐿(𝜃, 𝛿) = exp(𝑟(𝛿 − 𝜃)) − 𝑟(𝛿 − 𝜃) − 1 𝛿̂𝐿 = −
1

𝑟
log(𝐸𝜋(exp(−𝑟𝜃)) 𝑟(𝛿̂𝐺𝑄 − 𝛿̂𝐿) 

 

(1) We obtain the estimator and its corresponding risk (where p is an integer) 

Under the Entropy loss function: 

 

𝜃𝐸 = [∫ 𝜃−𝑝𝜋(𝜃/𝑋)
∞

0

𝑑𝜃]

−
1
𝑝

 

𝜃𝐸 = [
𝐾

2𝑛
∫ 𝜃𝑛−𝑝−1(

𝜃𝑥𝑖

2
+ 1)𝑛−𝑚𝑒−2𝜃(∑ 𝑥𝑖

𝑚
𝑖=1 +(𝑛+𝑚)𝑥𝑖) ∏(2𝜃𝑥𝑖 + 3)

𝑚

𝑖=1

𝑓𝜃
∞

0

]

−
1
𝑝

 

𝑃𝑅(𝜃𝐺𝑄) = 𝑝[𝐸𝜋(log(𝜃 − log(𝛿𝐸)))] 

 

(2) We obtain the estimator and its corresponding risk (where 𝜏(𝜃) =
𝜃𝛾−1, 𝛾is an integer)under the Generalized quadraticloss function: 

 

𝜃𝐺𝑄 =
∫ 𝜃𝛼𝜋(𝜃/𝑋)𝑑𝜃

∞

0

∫ 𝜃𝛼−1𝜋(𝜃/𝑋)𝑑𝜃
∞

0

 

𝜃𝐺𝑄 =
∫ 𝜃𝛼+𝑛−1(

𝜃𝑥𝑖

2 + 1)𝑛−𝑚𝑒−2𝜃(∑ 𝑥𝑖
𝑚
𝑖=1 +(𝑛+𝑚)𝑥𝑖) ∏ (2𝜃𝑥𝑖 + 3)𝑚

𝑖=1 𝑑𝜃
∞

0

∫ 𝜃𝛼+𝑛−2(
𝜃𝑥𝑖

2 + 1)𝑛−𝑚𝑒−2𝜃(∑ 𝑥𝑖
𝑚
𝑖=1 +(𝑛+𝑚)𝑥𝑖) ∏ (2𝜃𝑥𝑖 + 3)𝑚

𝑖=1 𝑑𝜃
∞

0

 

𝑃𝑅(𝜃𝐺𝑄) = 𝐸𝜋(𝜃𝛾+1) − 2𝜃𝐺𝑄𝐸𝜋(𝜃𝛾) + 𝜃2
𝐺𝑄𝐸𝜋(𝜃𝛾−1) 

 

(3) We obtain the estimator and its corresponding risk (where r is an integer) under the 

Linex loss function: 

𝜃𝐿 = −
1

𝑟
log [∫ 𝑒−𝑟𝜃𝜋(𝜃/𝑋)

∞

0

𝑑𝜃] 

𝜃𝐿 = −
1

𝑟
log[

𝐾

2𝑛
∫ 𝜃𝑛−1(

𝜃𝑥𝑖

2
+ 1)𝑛−𝑚𝑒−𝜃(𝑟+2(∑ 𝑥𝑖

𝑚
𝑖=1 +(𝑛+𝑚)𝑥𝑖)) ∏(2𝜃𝑥𝑖 + 3)

𝑚

𝑖=1

𝑑𝜃]

∞

0

 

𝑃𝑅(𝜃𝐿) = 𝑟(𝜃𝐺𝑄 − 𝜃𝐿) 
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5. Comparing the likelihood estimation 

and the Bayesian estimation using 

Pitman’s closeness criterion 

In order to compare the performance of 

the proposed Bayes estimators with the 

MLEs, we perform a Monte Carlo 

simulation study assuming that𝛽 = 1,5, and 

using 𝑁 = 5000 samples of the type II 

censored model with different sample sizes 

𝑛 = 10, 50, 200, while 𝑚 = 8, 40, 160 

respectively, we obtain the following 

results. Table 4 lists the values of the 

estimators using the function BB algorithm. 

We remark here that the estimated values of 

𝛽 are close to the true values of the 

parameter especially with the increase in 

sample size𝑛. Table 5 gives the Bayesian 

estimators and PR (in brackets) under GQ 

loss function. Table 6 presents the Bayesian 

estimators and PR (in brackets) under the 

entropy loss function. Table 7 gives 

Bayesian estimators and PR (in brackets) 

underLinex loss function. Table 8 shows the 

Bayesian estimators and PR (in brackets) 

under the three loss functions. In Table 5, 

the estimation under the GQ loss function, 

we remark that the value𝛾 = 1one gives the 

best posterior risk. Also, we obtain the 

smallest suitable posterior risk when n is 

high. In the estimation under the entropy 

loss function, we obtain Table 6 where we 

can notice that the value 𝑝 = −1 when𝑛 =
200provides the best posterior risk. We can 

notice clearly that the value 𝑟 = 1provides 

the best PR Summing up, making a small 

comparison between the three loss 

functions, it is clear that the best results are 

obtained by the quadratic loss function, 

Table 8 illustrate those results in details. We 

propose the comparison of the best 

Bayesian estimators with the maximum 

likelihood estimators.  For this purpose, we 

use the Pitman closeness criterion (see 

Pitman (1937), Fuller (1982) and Jozani 

(2012) for more details). 

 
Table 1. The MLE of the parameters with quadratic error (in brackets) 

𝑁 = 5000 𝑛 = 10 𝑛 = 50 𝑛 = 200 

𝑚 

𝛽 

8 

0.6235(0.0056) 

40 

0.8389(0.0044) 

160 

0.9675(0.00223) 

 
Table 2: Bayes estimators and PR (in brackets) under GQ loss function 

𝛾 𝑁 = 5000 𝑛 = 10 𝑛 = 50 𝑛 = 200 

𝜆
= −2 

𝜆
= −1,5 

𝜆
= −1 

𝜆
= −0,5 

𝜆
= 0,5 

𝜆 = 1 

𝜆
= 1,5 

𝜆 = 2 

𝑚 

𝛽 

𝛽 

𝛽 

𝛽 

𝛽 

𝛽 

𝛽 

𝛽 

8 

1,342(0.0031)  

 1.321(0.0025)   

 

1.3998(0.0031) 

 

1.4768(0.1241)  

 

1.7990(0.0087) 

1.4999(0.0534)  

 

1.6132(0.0012)  

 

1.2732(0.1004) 

40 

1.4632(0.0021)  

 

1.3839(0.0021)  

1.4213(0.0070)  

 

1.5158(0.0033) 

 

1.0825(0.0061)  

1.4705(0.711)   

1.4308(0.0070)  

1.5711(0.1231) 

160 

1.4743(0.0032)  

1.6926(0.0032)  

1.3421(0.0018)  

1.4991(0.1181)  

1.2127(0.0016)  

1.5012(0.0012)  

1.3412(0.0021)  

1.6903(0.0003) 
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Table 3. Bayes estimators and PR (in brackets) under the entropy loss function. 

𝛾 𝑁 = 5000 𝑛 = 10 𝑛 = 50 𝑛 = 200 

 

𝑝
= −2 

𝑝 = −1,5 

𝑝
= −1 

𝑝 = −0,5 

𝑝
= 0,5 

𝑝 = 1 

𝑝
= 1,5 

𝑝 = 2 

𝑚 

𝛽 

𝛽 

𝛽 

𝛽 

𝛽 

𝛽 

𝛽 

𝛽 

8 

   

11232(0.0042)   

   

1.7510(0.0095)  

   

1.0994(0.0089)  

  

1.4768(0.1241)   

  

1.7990(0.0087)   

  

1.2999(0.0825)   

  

1.7131(0.0012)   

  

1.4768(0.1241)   

40 

1.5632(0.0081)  

 2.1839(0.0020) 

 1.0888(0.0070)  

1.5158(0.0033)  

 1.0825(0.0061)  

 1.2701(0.711)    

 1.0888(0.0070)  

 1.6754(0.1181) 

160 

1.6743(0.0098)  

1.7926(0.0077)  

1.2138(0.0018)  

1.4991(0.1181)  

1.2127(0.0016)  

1.6432(0.0016)  

1.6432(0.0016)  

1.7903(0.0033) 

 

Table 4. Bayes estimators and PR (in brackets) under Linex loss function 

𝑟 𝑁 = 5000 𝑛 = 10 𝑛 = 50 𝑛 = 200 

 

. .
= −2 

. . = −1,5 

. .
= −1 

. . = −0,5 

. .
= 0,5 

. . = 1 

. .
= 1,5 

. . = 2 

𝑚 

𝛽 

𝛽 

𝛽 

𝛽 

𝛽 

𝛽 

𝛽 

𝛽 

8 

  

1.3188(0.0699)   

  

1.4407(0.0611)   

  

1.4177(0.0072)   

  

0.6493(0.0308)   

  

1.8895(0.0729)   

  

1.4148(0.0009)   

   

1,6037(0.0009)  

   

1.4239(0.0199)   

40 

1.2839(0.009)    

 1.4077(0.0661)  

 1.3633(0.0073)  

 07037(0.0009)   

 1.8998(0.0008)  

 1.4981(0.0038)  

  1.3055(0.319)   

  

1.3881(0.0303) 

160 

0.7034(0.011) 

1.7060(0.0012) 

0.7051(0.0003) 

0.8755(0.319) 

1.9814(0.0001) 

1.5100(0.0733) 

1.5491(0.0308) 

1.7059(0.0003) 
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Table 5. Bayes estimators and PR (in brackets) under the three loss function 

 𝑁 = 5000 𝑛 = 10 𝑛 = 50 𝑛 = 200 

𝑚 8 40 160 

𝐺𝑄|𝛾=1 

𝐸𝑛𝑡𝑟𝑜𝑝𝑦|𝑝=0.5 

𝐿𝑖𝑛𝑒𝑥|𝑟=1.5 

𝛽 

𝛽 

𝛽 

1.4999(0.0534)  

 

1.4768(0.1241)  

1.4148(0.0009)   

1.4705(0.711)    

 1.5158(0.0033)  

 1.4981(0.0038)  

1.5012(0.0012)  

1.4991(0.1181)  

1.5100(0.0733) 

Definition 1: An estimator 𝜃1 of a 

parameter 𝜃 dominates another estimator 𝜃2 

in the sense of Pitman’s closeness criterion 

if for all 𝜃 ∈ Φ 
 

𝑃𝜃[|𝜃1 − 𝜃| < |𝜃2 − 𝜃|] > 0.5 

 

In Table 9, we present the values of the 

Pitman probabilities which allows us to 

compare the Bayesian estimators with the 

MLE estimator which is done under the 

three loss functions when  

𝛾 = 1, 𝑝 = 0.5 , 𝑟 = 1.5. According to 

definition 1, when the probability is greater 

than 0.5, the Bayesian estimators are better 

than the MLE estimators. Then we notice 

that, according to this criterion, the 

Bayesian estimators of the parameters is 

better than the MLE. Also the GQ loss 

function has the best values in comparison 

with the other two loss functions with 
 

𝑎 = 0.745|𝑛=10,𝑚=10, 0.744|𝑛=50,𝑚=40 and 0.798|𝑛=200,𝑚=160. 

 

Table 6: Pitman comparison of the estimators 

 

 

 

𝐺𝑄|𝛾=1 

𝐸𝑛𝑡𝑟𝑜𝑝𝑦|𝑝=0.5 

𝐿𝑖𝑛𝑒𝑥|𝑟=1.5 

𝑁 = 5000 𝑛 = 10 𝑛 = 50 𝑛 = 200 

𝑚 

𝛽 

𝛽 

𝛽 

8 

0.745 

0.656 

0.712 

40 

0.744 

0.582 

0.544 

160 

0.798 

0.567 

0.544 

 

6. Application with Real Data Set 

Three applications are now proposed to 

illustrate the usefulness of the proposed 

distribution. More precisely, we explore the 

tuning behavior of the NPFD compared to 

the exponential, the Lindley, Zeghdoudi, 

XLindley, Xgamma    and new XLindley 

distributions. For this, we estimate the 

unknown parameters of the respective 

model using the maximum likelihood 

method and consider their corresponding 

standard errors (SE), the estimated log 

likelihoods (- 2logL), the values of AIC 

(Akaike information criterion) AICC 

(Akaike information criterion correction), 

HQIC (Hannan–Quinn information 

criterion) and BIC (Bayesian information 

criterion). 

Data set 1: For numbers of users connected 

to the Internet data   

A time series of the numbers of users 

connected to the Internet through a server 

every minute. See (Durbin and Koopman 

(2001)) 

88,84,85,85,84,85,83,85,88,89,91,99,104,1

12,126,138,146,151,150,148,147,149,143,

132,131,139,147,150,148,145,140,134,131
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,131,129,126,126,132,137,140,142,150,15

9,167,170,171,172,172,174,175,172,172,1

74,174,169,165,156,142,131,121,112,104,

102,99,99,95,88,84,84,87,89,88,85,86,89,9

1,91,94,101,110,121,135,145,149,156,165,

171,175,177,182,193,204,208,210,215,222

,228,226,222,220. 

 

Model θ AIC BIC -2L AICC HQIC 

Exponential 0.007305803 1186.113 1188.718  1184.113 1186.154 1187.168 

Lindley 0.01450447 1118.71 1121.315 1116.71 1118.751 1119.764 

XLindley 0.01439125 1119.983 1122.589  1117.983 1120.024 1121.038 

New-XLindley 0.01172219 1162.795 1165.4  1160.795 1162.835 1163.849 

Xgamma 0.02168419  1085.733 1088.338 1083.733 1085.773 1086.787 

Zeghdoudi 0.02180811 1083.269 1085.874  1081.269 1083.31  1084.323 

NPFD 
0.00472895 1179.935 1182.54 1177.935 1179.976 1180.989 

 

7. For Yearly Numbers of Important 

Discoveries data  

The numbers of "great" inventions and 

scientific discoveries in each year from 

1860 to 1959. See (The World Almanac and 

Book of Facts, 1975) 

5, 3, 0, 2, 0, 3, 2, 3, 6, 1, 2, 1, 2, 1, 3, 3, 3, 5, 

2, 4, 4, 0, 2, 3, 7, 12, 3, 10, 9, 2, 3, 7, 7, 2, 3, 

3, 6, 2, 4, 3, 5, 2, 2, 4, 0, 4, 2, 5, 2, 3, 3, 6, 5, 

8, 3, 6, 6, 0, 5, 2, 2, 2, 6, 3, 4, 4, 2, 2, 4, 7, 5, 

3, 3, 0, 2, 2, 2, 1, 3, 4, 2, 2, 1, 1, 1, 2, 1, 4, 4, 

3, 2, 1, 4, 1, 1, 1, 0, 0, 2, 0 
 

Model θ AIC BIC -2L AICC HQIC 

Exponential 0.3225761 

 

428.2804 

 

430.8856 

 

426.2804 

 

428.3212 

 

429.3348 

 Lindley 0.5330051  

 

417.7608 

 

420.366 

 

415.7608 

 

417.8016 

 

418.8152 

 XLindley 0.4703674 

 

420.9874 

 

423.5926 

 

418.9874 

 

421.0283 

 

422.0418 

 New-XLindley 0.4922593 

 

420.1228 

 

422.728 

 

418.1228 

 

420.1636 

 

421.1772 

 Xgamma 0.7153558 

 

415.2443 

 

417.8495 

 

413.2443 

 

415.2852 

 

416.2987 

 Zeghdoudi       

NPFD 0.2045404 

 

425.613 

 

428.2182 

 

423.613 

 

425.6538 

 

426.6673 

 

8. Populations Recorded by the US 

Census data 

This data set gives the population of the 

United States (in millions) as recorded by 

the decennial census for the period 1790--

1970. See (McNeil (1977)). 3.93, 5.31, 

7.24, 9.64, 12.90, 17.10, 23.20, 31.40, 

39.80, 50.20, 62.90, 76.00, 92.00, 105.70, 

122.80, 131.70, 151.30, 179.30, 203.20 

 
Model θ AIC BIC -2L AICC HQIC 

Exponential 0.01435232 

 

201.3175 

 

202.2619 

 

199.3175 

 

201.5528 

 

201.4773 

 Lindley 0.0282759 

 

207.6266 

 

208.571 

 

205.6266 

 

207.8619 

 

207.7864 

 XLindley 0.02790613 

 

206.924 

 

207.8684 

 

204.924 

 

207.1593 

 

207.0838 

 New-XLindley 0.02114924 

 

201.6523 

 

202.5968 

 

199.6523 

 

201.8876 

 

201.8122 

 Xgamma 0.04029827 

 

215.4385 

 

216.3829 

 

213.4385 

 

215.6738 

 

215.5983 

 Zeghdoudi 0.04269358 

 

220.9815 

 

221.926 

 

218.9815 

 

221.2168 

 

221.1414 

 NPFD 0.008958483 

 

201.2335 

 

202.1779 

 

199.2335 

 

201.4688 

 

201.3933 

 
 

9. Conclusion and Perspectives  

In this paper we have shown how 

probability distributions can be constructed 

without adding additional parameters or 

using the usual generalizations techniques. 

The proposed distribution is called the 

NPFD. It can be seen that the NPFD has 

many desirable properties. We have derived 

precise and explicit expressions for many 

characteristics, in particular moments, 
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reliability parameters and asymptotic 

distributions of order statistics. For 

estimating parameters, we have discussed 

the method of moments and the method of 

maximum likelihood. In addition, NPFD, 

exponential, Lindley, Zeghdoudi, 

XLindley, Xgamma    and new XLindley 

distributions were fitted to three real 

datasets; and the results showed that the 

NPFD distribution is a strong candidate 

with one parameter. We can also use the 

NPFD distribution as the basis for new 

distributions, for other distributions from a 

statistical perspective, such as the 

pioneering work of Beghriche et al. (2022). 
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