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Abstract 

An extension of the current ZLindley distribution, the new one-parameter Square ZLindley distribution (SZLD) 

is presented in this paper. It is possible to utilise the suggested model with both left-symmetric and left-skewed 

data sets. The shape of the SZLD will be discussed. Additionally included are quantile functions, moment 

generation functions, mean lifespan functions, Rényi entropy, order statistics, and survival and hazard functions. 

To effectively convey the usefulness of the suggested distribution, statistical features like moments, modes, 

quantile functions, and moment generator functions are produced. Using the maximum likelihood estimation 

method, parameters were computed. A comprehensive simulation analysis is conducted to assess these suggested 

estimators' performance using MLE for various parameter values two real-world datasets are used to illustrate 

the applicability and flexibility of the newly suggested distribution. Additional statistical inferences on the SZLD 

are supplied by data fitting, simulation studies, and graphing, utilising R and Maple tools. 
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1. Introduction 

In many fields, including as actuarial 

science, management, engineering, physics, 

biology, hydrology, and computer science, 

the modelling and analysis of lifetime data 

is essential. Traditional probability 

distributions have been applied to a range of 

data sizes. When classical or traditional 

probability models are unable to adequately 

describe real-world data, significant issues 

occur. Consequently, it is imperative to 

enhance the flexibility of existing 

probability models by adding more 

parameters or combining two distributions. 

Various approaches to include components 

in the primary model have been recorded in 

academic research. Surveys conducted by 

Azzalini (1985), Bourguignon et al. (2014), 

Eugene et al. (2002) and Shawet al. (2009) 

are recommended for a comprehensive 

analysis of generalisation methods used on 

baseline distributions. These websites are 

excellent sources for additional research 

and provide insightful analyses on the topic. 

The statistical literature has suggested a 

number of one-parameter models, such as 

the Lindley, exponential, Zeghdoudi, 

Shanker, XLindley, new XLindley, and 

Xgamma, to alter lifespan data. The purpose 

of this article is, firstly, to propose and study 

a new distribution with one parameter using 

the square transformation. It may be used in 

a wide variety of areas, including biology, 

engineering, astronomy, actuarial science, 

and medicine. On the other hand, the new 

distribution has an increased risk rate and a 

decreasing average residual life function. 

This new distribution may attract research 

attention. The new one-parameter 

polynomial exponential distribution 

(NPED) is a new statistical family that was 

recently introduced by Beghriche et al. 

(2022) and Saaidia et al. (2024). The 

probability density function (p.d.f) of this 

distribution defines.

 

 

𝑓𝑁𝑃𝐸𝐷(t, θ) =
𝑃(𝑡, 𝜃)𝑒−𝜃𝑡

∑ 𝑎𝑘,𝜃
𝑘!

𝜃𝑘+1
𝑛
𝑘=0

      ; 𝑡, θ > 0              (1)                                                                

 
Where, 𝑃(𝑡, 𝜃) = ∑ 𝑎𝑘,𝜃𝑡𝑘𝑛

𝑘=0 , and 𝑎𝑘,𝜃  depend on 𝑘and θ. 

The ZLindley distribution (ZLD) is derived as a specific instance of equation (1), when 𝑛 = 1, 𝑎0,𝜃 = 1 +

2𝜃, 𝑎1,𝜃 = 𝜃as follows  

𝑓(𝑡) =
𝜃

2(1 + 𝜃)
(1 + 2𝜃 + 𝜃𝑡)𝑒−𝜃𝑡 ,      𝑡, 𝜃 > 0 

 

The following are the main objectives of our 

study: The objective is to identify its 

qualities and provide a new enlargement of 

the Square ZLindley distribution. to use the 

maximum likelihood estimation technique 

to determine the parameters of the new 

distribution. Applying the suggested 

distribution to two real datasets. 

 

 

 

2. Derivation of the Square ZLindley 

Model  

The Square ZLindley 

distribution(SZLD)  is obtained by applying 

a following transformation 𝑌 =  𝑇
1

2, where 

T follows the ZLindley distribution.The 

random variable Y is distributed according 

to the SZLD, which is symbolically 

represented as 𝑌~𝑆𝑍𝐿𝐷(𝜃). The 

cumulative distribution function (CDF) of 

the SZLD is obtained in the following 

manner: 
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𝐹(𝑦) = 1 − (1 +
𝜃𝑦2

2(1 + 𝜃)
) 𝑒−𝜃𝑦2

,                                                                (2) 

 

The corresponding probability density function (PDF) is 

 

𝑓(𝑦) =
𝜃𝑦(1 + 2𝜃 + 𝜃𝑦2)

(1 + 𝜃)
𝑒−𝜃𝑦2

.                                                              (3) 

 

 

2.1. Shape of SZLD 

The limiting behavior of PDF at the 

upper limit is given in the following 

Theorem 1. The limiting behavior of PDF at 

the lower limit is  

 

lim
𝑦→0

𝑓(𝑦) = 0. 

 

The limiting pattern at the upper limit is 

 

lim
𝑦→∞

𝑓(𝑦) = 0. 

 

Theorem 1. The density function of the SZLD is unimodal behavior start from zero where the mode is  

 

𝑀𝑜𝑑𝑒=  2−
1

2 {
−(4𝜃−1)+√(9+8𝜃+16𝜃2)

2𝜃
}

1

2

. 

 

Proof. Firstly, we determine the first derivative of the PDF for 𝑌 of the SZLD as follows: 

 

𝜕𝑓(𝑦)

𝜕𝑦
=

𝜃(−2𝜃2𝑦4 − 𝑦2(4𝜃2 − 𝜃) + (1 + 2𝜃))𝑒−𝜃𝑦2

(1 + 𝜃)
, 

Then equating the previous equation to zero and solving if for 𝑦, we have the SZLD modes as follows: . 

𝑀𝑜𝑑𝑒 =  2−
1

2 {
−(4𝜃 − 1) + √(9 + 8𝜃 + 16𝜃2)

2𝜃
}

1

2

, 𝑎𝑛𝑑 
𝜕2𝑓(𝑚𝑜𝑑𝑒)

𝜕𝑦2
< 0. 

 

Since, The PDF of the SZLD is unimodal behavior start from zero. 

 

 

3. Statistical Properties 

The main goal of this section is to derive 

various statistical properties of the proposed 

distribution. The moments and related 

measures, quantile function, mean residual 

life function, actuarial measure, and order 

statistics are some examples of these 

characteristics. 

3.1. Moments  

The rth moments of SZLD are  
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𝜇𝑟
′ = ∫

𝜃𝑦𝑟+1(1 + 2𝜃 + 𝜃𝑦2)

(1 + 𝜃)
𝑒−𝜃𝑦2

∞

0

𝑑𝑦 

𝜇𝑟
′ =

𝜃−
𝑟

2(𝑟 + 4(1 + 𝜃))Γ (1 +
𝑟

2
)

4(1 + 𝜃)
.                                                               (4) 

 

The first four moments about the origin are obtained by taking 𝑟 = 1,2,3, and 4.  

 

𝜇1
′ =

𝜃−
1

2(5 + 4𝜃)Γ (
3

2
)

4(1 + 𝜃)
.                                                                 (5) 

 

𝜇2
′ =

𝜃−1(6 + 4𝜃)Γ(2)

4(1 + 𝜃)
.                                                                (6) 

 

𝜇3
′ =

𝜃−
3

2(7 + 4𝜃)Γ (
5

2
)

4(1 + 𝜃)
.                                                             (7) 

 

𝜇4
′ =

𝜃−2(8 + 4𝜃)Γ(3)

4(1 + 𝜃)
.                                                              (8) 

Additionally, by using moments around the origin, we can determine the 𝑖𝑡ℎ central moments of  Y as follows:  

 

𝜇𝑖 = 𝐸(𝑦 − 𝜇)𝑖 = ∑ (−1)𝑚

∞

𝑚=0

(
𝑖

𝑚
) 𝜇1

′𝑚𝜇𝑖−𝑚
′ . 

 

𝐸(𝑋) = 𝜇1
′ =

𝜃−
1

2(5 + 4𝜃)Γ (
3

2
)

4(1 + 𝜃)
 

and  

 

𝑉𝐴𝑅(𝑋) = 𝜇2
′ − (𝜇1

′ )2 =
4(6 + 4𝜃)(1 + 𝜃) + (5 + 4𝜃)2Γ (

3

2
)

2

16𝜃(1 + 𝜃)2
 

 

The formulas for calculating the coefficient of variance, coefficient of skewness, and kurtosis 

can be obtained using the following equations.  

𝐶𝑉 =
𝑆𝐷(𝑥)

𝑀𝑒𝑎𝑛(𝑥)
=

√𝑉𝑎𝑟(𝑋)

𝐸(𝑋)
=

√4(6 + 4𝜃)(1 + 𝜃) + (5 + 4𝜃)2Γ (
3

2
)

2

(5 + 4𝜃)Γ (
3

2
)
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𝛾1 =
𝜇3

′ − 3𝜇2
′ 𝜇1

′ + 2(𝜇1
′ )3

(𝜇2
′ − (𝜇1

′ )2)
3

2

=
𝐸(𝑋3)

(𝑉𝑎𝑟(𝑋))
3

2

=
16(1 + 𝜃)2(7 + 4𝜃)Γ (

5

2
)

(4(6 + 4𝜃)(1 + 𝜃) + (5 + 4𝜃)2Γ (
3

2
)

2

)

3

2

 

and 

 

𝛾2 =
𝜇4

′ − 4𝜇3
′ 𝜇1

′ + 6𝜇2
′ (𝜇1

′ )2 − 3(𝜇1
′ )4

(𝜇2
′ − (𝜇1

′ )2)2
=

𝐸(𝑋4)

(𝑉𝑎𝑟(𝑋))
2 =

128(8 + 4𝜃)(1 + 𝜃)3

(4(6 + 4𝜃)(1 + 𝜃) + (5 + 4𝜃)2Γ (
3

2
)

2

)
2 

Table 1 provides certain numerical 

values 530ort he mean, variance, coefficient 

of skewness, and coefficient of kurtosis for 

a few chosen parameter values.  

 

Table 1. Some computational statistics of SZL distribution  

 

 

3.2. Quantile Function  

As can be shown from Eq. (2), the quantile 

function F is continuous and strictly 

increasing, and is thus defined as 
 

𝑄𝑢𝑎𝑛𝑡𝑖𝑙𝑒 = 𝑦𝑝 = 𝐹𝑌
−1(𝑝)           (9) 

 

Theorem 2.For 𝑝 = 𝐹𝑌(𝑦), using the Lambert W function the expression 530ort he quantile function is 

obtainable, for any 𝜃 > 0, the 𝑦𝑝 of SZLD is: 

 

𝑦𝑝 = {−
2(1 + 𝜃)

𝜃
−

1

𝜃
𝑊−1[(𝑝 − 1)2(1 + 𝜃)𝑒−2(1+𝜃)]}

1

2

          (10) 

where 𝑊−1is the negative branch of the Lambert W function. 

 

Proof: For any 𝜃 > 0, suppose 0 < P < 1 

 

From cdf of SZLD, The equation 𝑝 = 𝐹𝑌(𝑦) will be solved for y. 

 

1 − (1 +
𝑦2𝜃

2(1 + 𝜃)
) 𝑒−𝜃𝑦2

= 𝑝 

[2(1 + 𝜃) + 𝑦2𝜃]𝑒−𝜃𝑦2
= 2(1 − 𝑝)(1 + 𝜃)               (11) 

 

Multiply both sides of Eq. (11) by 𝑒−2(1+𝜃) we get 

𝜽 Mean Var CV Skewness Kurtosis 

0.10 3. 4394 26. 375 1. 4932 0.52194 0.54887 

0.50 1. 4622 4. 8047 1. 4991 0.53552 0.57757 

1. 0 0.99701 2. 244 1. 5025 0.54375 0.59576 

2.0 0.67888 1. 0442 1. 5052 0.55058 0.61141 
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[2(1 + 𝜃) + 𝑦2𝜃]𝑒−𝜃𝑦2
𝑒−2(1+𝜃) = 2(1 − 𝑝)(1 + 𝜃)𝑒−2(1+𝜃) 

 

−[2(1 + 𝜃) + 𝑦2𝜃]𝑒−[2(1+𝜃)+𝜃𝑦2] = 2(p − 1)(1 + 𝜃)𝑒−2(1+𝜃) 

 

Applying the Lambert W function on both sides we get 

 

𝑊[−[2(1 + 𝜃) + 𝑦2𝜃]𝑒−[2(1+𝜃)+𝜃𝑦2]] = 𝑊[2(p − 1)(1 + 𝜃)𝑒−2(1+𝜃)]               (12) 

 

As we know that 𝑊[𝑧𝑒𝑧] = 𝑧, then Eq. (10) becomes 

 

−[2(1 + 𝜃) + 𝜃𝑦2] = 𝑊[2(p − 1)(1 + 𝜃)𝑒−2(1+𝜃)] 

 

For 𝜃 > 0 and𝑦 > 0, 2(1 + 𝜃) + 𝑦2𝜃 > 0 and it is also checked 2(p − 1)(1 + 𝜃)𝑒−2(1+𝜃) ∈ (
1

𝑒
, 0) since 0 < p 

< 

3. Thus, by using the properties of the negative branch 𝑊−1 of the Lambert W function. Hence 

 

−[2(1 + 𝜃) + 𝑦2𝜃] = 𝑊−1[2(p − 1)(1 + 𝜃)𝑒−2(1+𝜃)] 

 

𝑦𝑝 = {−
2(1 + 𝜃)

𝜃
−

1

𝜃
𝑊−1[2(p − 1)(1 + 𝜃)𝑒−2(1+𝜃)]}

1

2

. 

 

Table 2 shows some quantiles of the SZLD, which have been calculated from the closed form 

expression for 𝐹𝑌
−1(𝑝) 

𝑝 𝜃 = 0.01 𝜃 = 0.1 𝜃 = 1.5 𝜃 = 3 

0.01 1. 4074 0.42851 9. 1502×10⁻² 6. 1873×10⁻² 

0.05 3. 1506 0.96157 0.20658 0.13975 

0.1 4. 4675 1. 3671 0.29583 0.20024 

0.25 7. 1738 2. 2092 0.48756 0.33058 

0.4 9. 3191 2. 8834 0.64776 0.44005 

0.5 10. 681 3. 3136 0.75285 0.51218 

0.6 12. 084 3. 7578 0.86337 0.58831 

0.75 14. 487 4. 5201 1. 0568 0.72226 

0.9 18. 067 5. 6574 1. 3514 0.92778 

 

 

3.3. Moment Generating Function 

The moment-generating function is derived as follows 

𝑀𝑌(𝑡) = 𝐸(𝑒𝑡𝑦) = ∫ 𝑒𝑡𝑦𝑓(𝑦)𝑑𝑦
∞

0

 

860



Lazri et al. 

𝑀𝑌(𝑡) = ∫ 𝑒𝑡𝑦
∞

0

𝜃𝑦(1 + 2𝜃 + 𝜃𝑦2)

(1 + 𝜃)
𝑒−𝜃𝑦2

𝑑𝑦                 (13) 

We know that 𝑒𝑡𝑦 = ∑
(𝑡𝑦)𝑟

𝑟!

∞
𝑟=0  

Eq. (13) will be 

𝑀𝑌(𝑡) = ∑
𝑡𝑟

𝑟!

∞

𝑟=0

(
𝜃−

𝑟

2(𝑟 + 4(1 + 𝜃))Γ (1 +
𝑟

2
)

4(1 + 𝜃)
).                                     (14) 

 

3.4. Rényi Entropy 

Rényi entropy can be derived as 

   

𝐻𝑅(Η) =
1

1 − Η
ln [∫ (𝑓(𝑦))𝜂𝑑𝑦

∞

−∞

] , 𝜂 > 0, 𝜂 ≠ 1                                               (15) 

 

When Y~ SZLD, then 

 

∫ (𝑓(𝑦))𝜂𝑑𝑦
∞

0

= ∫ [
𝜃𝑦(1 + 2𝜃 + 𝜃𝑦2)

(1 + 𝜃)
𝑒−𝜃𝑦2

]

𝜂

𝑑𝑦
∞

0

 

 

∫ (𝑓(𝑦))𝜂𝑑𝑦
∞

0

=
𝜃𝜂(1 + 2𝜃)𝜂

(1 + 𝜃)𝜂
∫ (1 +

𝜃𝑦2

1 + 2𝜃
)

𝜂

𝑦𝜂𝑒−𝜃𝜂𝑦2
𝑑𝑦

∞

0

 

 

Using the following binomial expansion 

 

(1 + 𝑧)𝑛 = ∑ (
𝑛
𝑖

) 𝑧𝑖
∞

𝑖=1
 

 

(1 +
𝜃𝑦2

1 + 2𝜃
)

𝜂

= ∑ (
𝜂
𝑖

) (
𝜃𝑦2

1 + 2𝜃
)

𝑖∞

𝑖=1

= ∑ (
𝜂
𝑖

)
𝜃𝑖

(1 + 2𝜃)𝑖
𝑦2𝑖

∞

𝑖=1

 

 

∫ (𝑓(𝑦))𝜂𝑑𝑦
∞

0

=
𝜃𝜂(1 + 2𝜃)𝜂

(1 + 𝜃)𝜂
∑ (

𝜂
𝑖

)
𝜃𝑖

(1 + 2𝜃)𝑖

∞

𝑖=1

∫ 𝑦2𝑖+𝜂𝑒−𝜃𝜂𝑦2
∞

0

𝑑𝑦 

Substitute𝜃𝜂𝑦2 = 𝑡 

𝑖𝑓   𝑦 → 0 𝑡ℎ𝑒𝑛        𝑡 → 0  𝑎𝑛𝑑 𝑦 → ∞       𝑡ℎ𝑒𝑛         𝑡 → ∞ 

𝑦2 =
𝑡

𝜃𝜂
    𝑎𝑛𝑑   𝑦 = (

𝑡

𝜃𝜂
)

1

2

𝑎𝑛𝑑  𝑎𝑙𝑠𝑜     2𝜃𝜂𝑦 𝑑𝑦 = 𝑑𝑡 

𝑑𝑦 =
𝑑𝑡

2𝜃𝜂𝑦
=

𝑑𝑡

2𝜃𝜂 (
𝑡

𝜃𝜂
)

1

2
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∫ (𝑓(𝑦))𝜂𝑑𝑦
∞

0

=
𝜃𝜂(1 + 2𝜃)𝜂

(1 + 𝜃)𝜂
∑ (

𝜂
𝑖

)
𝜃𝑖

(1 + 2𝜃)𝑖

∞

𝑖=1

1

2(𝜃𝜂)
2𝑖+𝜂

2
+

1

2

∫ 𝑡
(

2𝑖+𝜂

2
−

1

2
)
𝑒−𝑡

∞

0

𝑑𝑡 

 

 

∫ (𝑓(𝑦))𝜂𝑑𝑦
∞

0

=
𝜃𝜂(1 + 2𝜃)𝜂

2(1 + 𝜃)𝜂
∑ (

𝜂
𝑖

)
𝜃𝑖

(1 + 2𝜃)𝑖

∞

𝑖=1

1

(𝜃𝜂)
𝜂+1

2
+𝑖

Γ (
2𝑖 + 𝜂 + 1

2
) 

Hence Eq. (15) becomes 

𝐻𝑅(Η) =
1

1 − Η
ln {

𝜃𝜂(1 + 2𝜃)𝜂

2(1 + 𝜃)𝜂
∑ (

𝜂
𝑖

)
𝜃𝑖

(1 + 2𝜃)𝑖

∞

𝑖=1

1

(𝜃𝜂)
𝜂+1

2
+𝑖

Γ (
𝜂 + 1

2
+ 𝑖)}           (16) 

 

3.6. Survival and Hazard function 

The survival function of SZLD is  

 

𝑆(𝑦) = (1 +
𝜃𝑦2

2(1 + 𝜃)
) 𝑒−𝜃𝑦2

,                                                                     (17) 

 

The hazard function is obtained as  

ℎ(𝑦) =
2𝜃𝑦(1 + 2𝜃 + 𝜃𝑦2)

2 + 2𝜃 + 𝜃𝑦2
.                                                                        (18) 

 

 

3.7. Mean Residual Life Function 

𝑚(𝑡) =
1

𝑆(𝑡)
∫ 𝑦𝑓(𝑦)

∞

𝑡

𝑑𝑦 − 𝑡                      (19) 

Consider an integral part 

∫ 𝑦𝑓(𝑦)

∞

𝑡

𝑑𝑦 = ∫
𝜃𝑦2(1 + 2𝜃 + 𝜃𝑦2)

(1 + 𝜃)
𝑒−𝜃𝑦2

∞

𝑡

𝑑𝑦 

∫ 𝑦𝑓(𝑦)

∞

𝑡

𝑑𝑦 =
𝜃

(1 + 𝜃)
[(1 + 2𝜃) ∫ 𝑦2𝑒−𝜃𝑦2

∞

𝑡

𝑑𝑦 + 𝜃 ∫ 𝑦4𝑒−𝜃𝑦2

∞

𝑡

𝑑𝑦] 

 

∫ 𝑦𝑓(𝑦)

∞

𝑡

𝑑𝑦 =
𝜃

(1 + 𝜃)
[
(1 + 2𝜃)

2𝜃
3

2

Γ (
3

2
, 𝑡2𝜃)  +

1

2𝜃
3

2

Γ (
5

2
, 𝑡2𝜃)] (20) 

Incorporating Eq. (20) into Eq. (19), we get the following expression 

𝑚(𝑡) =
1

𝑆(𝑡)
{

1

2(1 + 𝜃)𝜃
1

2

[(1 + 2𝜃)Γ (
3

2
, 𝑡2𝜃)  + Γ (

5

2
, 𝑡2𝜃)]} − 𝑡.               (21) 
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3.8. Order Statistics  

The random variables Y(i), Y(n), and  Y(m), 

represents order statistics of high, 

minimum, and maximum ranks. Below are 

PDFs for ith order statistics. 

 

𝑓(𝑖,𝑛) =
𝑛!

(𝑖 − 1)! (𝑛 − 𝑖)!
𝑔(𝑦)⌊𝐺(𝑦)⌋𝑖−1⌊1 − 𝐺(𝑦)⌋𝑛−𝑖 

Using pdf and cdf of SZLD, the pdf of 𝑌𝑖,𝑛is given defined below: 

 

𝑓(𝑖,𝑛) =
𝑛!

(𝑖 − 1)! (𝑛 − 𝑖)!
⌊1

− (1 +
𝜃𝑦2

2(1 + 𝜃)
) 𝑒−𝜃𝑦2

⌋

𝑖−1

⌊(1 +
𝜃𝑦2

2(1 + 𝜃)
) 𝑒−𝜃𝑦2

⌋

𝑛−𝑖
𝜃𝑦(1 + 2𝜃 + 𝜃𝑦2)

(1 + 𝜃)
𝑒−𝜃𝑦2

(22) 

The pdf of the smallest order statistic is 

𝑓(1,𝑛) =
𝑛𝜃

(1 + 𝜃)
𝑦(1 + 2𝜃 + 𝜃𝑦2)𝑒−𝜃𝑦2

[(1 +
𝜃𝑦2

2(1 + 𝜃)
) 𝑒−𝜃𝑦2

]

𝑛−1

(23) 

The pdf of the largest order statistic is 

𝑓(𝑛,𝑛) =
𝑛𝜃

(1 + 𝜃)
𝑦(1 + 2𝜃 + 𝜃𝑦2)𝑒−𝜃𝑦2

[1 − (1 +
𝜃𝑦2

2(1 + 𝜃)
) 𝑒−𝜃𝑦2

]

𝑛−1

(24) 

 

4. Parameter Estimation and Simulation 

Study 

In this section, the maximum likelihood 

(ML) estimate approach is used to 

determine the SZLD parameters. The 

mathematical formulas for the procedure 

are derived. Additionally, an analysis using 

a Monte Carlo simulation is performed for 

a range of sample sizes (n = 20, 50, 100, 

150, and 500) and parameter combinations. 

4.1. ML Estimation 

Consider 𝑦1, 𝑦2, 𝑦3, … , 𝑦𝑛 be a random 

sample of size 𝑛 from SZLD. Then the 

likelihood function is subsequently 

obtained as follows 

 

∏ 𝑓(𝒚)

𝑛

𝑖=1

= ∏ [
𝜃𝑦𝑖(1 + 2𝜃 + 𝜃𝑦𝑖

2)

(1 + 𝜃)
𝑒−𝜃𝑦𝑖

2
]

𝑛

𝑖=1

            (25) 

 

The log-likelihood function is 

𝑙(𝐿) = 𝑛 log(𝜃) − 𝑛 log((1 + 𝜃)) + ∑ log(𝑦𝑖)

𝑛

𝑖=1

+ ∑ log(1 + 2𝜃 + 𝜃𝑦𝑖
2)

𝑛

𝑖=1

− 𝜃 ∑ 𝑦𝑖
2

𝑛

𝑖=1

            (26) 

Now differentiate Eq. (26)with respect to parameter, respectively. 

𝜕𝑙(𝐿)

𝜕𝜃
=

𝑛

𝜃(1 + 𝜃)
+ ∑

2 + 𝑦𝑖
2

(1 + 2𝜃 + 𝜃𝑦𝑖
2)

𝑛

𝑖=1

− ∑ 𝑦𝑖
2

𝑛

𝑖=1

(27) 

 

Equation (27) been solved simultaneously 

in order to yield the ML estimations of the 

parameter, which equate to zero. However, 

the solutions to these equations have no 
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closed form. Therefore, numerical methods 

are applied. 

4.2. Simulation Study 

The performance of the SZLD 

distribution is assessed using the N=5000 

repetitions of the Monte Carlo simulation 

research. MSE, coverage probability (CP) 

of 95%, and absolute bias are used to 

elaborate on MLE performance. Different 

sets of actual parameter values are applied. 

For the simulation, sample sizes of n=15, 

30, 80, 150, and 

300 will be taken into account. The results 

of the simulation investigation are given in 

Table 3 below. The estimated values of 

parameters with absolute bias and MSE are 

obtained using simulated data. The findings 

indicate that bias and MSE are decreased 

with larger sample sizes. 

 

 

Table 3. Simulation using MLEs for different values of  𝜃. 
Para. 𝒏 Estimates MSE biais 

𝜃 = 0.10 
 

 𝜃 𝜃  𝜃  

15 0.1119 1.4154 10-4  1.1897 10-2  

30 0.1000 8.0866 10-5  8.9925 10-3  

80 0.1021 4.5238 10-6  2.100 10-3  

150 0.1009 8.4092 10-7  9.1701 10-4  

300 0.1005 3.2694 10-7  5.7179 10-4  

𝜃 = 0.75 
 

15 0.7702 4.103210-4  2.0256 10-2  

30 0.7652  2.330210-4  1.5265 10-2  

80 0.7543 1.904210-5  4.363710-3  

150 0.7541 1.733610-5  4.163610-3  

300 0.7511 1.3448 10-6  1.1596 10-3  

𝜽 = 𝟐 
 

15 2.2131 4.542310-2  0.2131  

30 2.1051  1.106210-2  0.1051  

80 2.0401 1.6146 10-3  4.0182 10-2  

150 2.0230 5.3003 10-4  2.3022 10-2  

300 2.0064 4.1260 10-5  6.4234 10-3  
 

 

5. Application of SZLD Distribution 

In this section, we compare the SZLD to 

the baseline ZL distribution and some other 

renowned probability models available in 

the literature. We compare the fits with the 

following probability models; Zlindley 

(Saaidia et al.2024), two-parameter L1 

(Shanker et al.2013), two-parameter L2 

(Shanker et al.2013), quasi lindley(Shanker 

et al.2013) , new quasi lindley (Shanker et 

al.2013), gamma Lindley(Nadjar et 

al.2016), power Xlindley (B. Meriem et 

al.2022), XLindely (S. Chouia et al.2021), 

new Xlindley(N. Khodja et al.2023), 

Lindley (Lindley, D. V.1958) and Xgamma 

(S. Sen et al.2016) distributions.  The model 

selection is carried out using the following 

statistics: 
 

AIC = −2L + 2p,      BIC =  −2L + plog(n),    CAIC = −2L +
2pn

n − p − 1
 

 

5.1. Data Set I: 

For DDT in Kale data 

A numerical vector including 15 

measurements of the pesticide DDT in kale, 

measured using diverse pesticide residue 

measuring methods and expressed in ppm 

(parts per million). The observations are: 

2.79, 2.93, 3.22, 3.78, 3.22, 3.38, 3.18, 3.33, 

3.34, 3.06, 3.07, 3.56, 3.08, 4.64, 3.34 (see 

Finsterwalder (1976)). 
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Table 4. The ML estimates,-2 log-likelihood, AIC, BIC, and CAIC for Data Set I 
Model density 

    
AIC BIC -2L CAIC 

two-
paramete

r L1 

( )2 e

1

xx  



−+

+
 

0.622391 0.000855
2 

58.7414
8 

60.1575
8 

54.7414
8 

59.7414
8 

gamma 
Lindley ( )( )

( )

2 1 e

1

xx    

 

−+ − +

+
 

0.598546 20.45021 58.9675
7 

60.3836
7 

54.9675
7 

59.9675
7 

quasi 
Lindley 

( )e

1

xx   



−+

+
 

0.89774 0.000693
9 

67.4954
4 

68.9115
5 

63.4954
4 

68.4954
4 

new quasi 
Lindley 

( )2

2

e xx   

 

−+

+
 

0.593307 24.60633 58.9076
1 

60.3237
1 

54.9076
1 

59.9076
1 

two 
paramete

r L2 

( )2 1 e xx  

 

−+

+
 

0.595902 23.3598 59.0653
2 

60.4814
2 

55.0653
2 

60.0653
2 

Power 
XLindley 

 1.44965 0.381104 106.811
8 

108.227
9 

102.811
8 

107.811
8 

ZLindley ( )

( )

1 2 e

2 1

xx   



−+ +

+
 

0.419023
7 

/ 66.0677
5 

66.7758 64.0677
5 

66.3754
4 

Square 
ZLindley ( )

( )

221 2 e

1

xx x   



−+ +

+
 

0.134680
2 

/ 45. 115 45. 823 43. 115 45. 423 

 

5.2. Data Set II:  

The second data set is illustrated below 

and is utilized by 14. The figures collected 

indicate the breaking stress of carbon fibers 

50mm in length (GPa). The observations 

are: 0.39, 0.85, 1.08, 1.25, 1.47, 1.57, 1.61, 

1.61, 1.69, 1.80, 1.84, 1.87, 1.89, 2.03, 2.03, 

2.05, 2.12,2.35, 2.41, 2.43, 2.48, 2.50, 2.53, 

2.55, 2.55, 2.56, 2.59, 2.67, 2.73, 2.74, 2.79, 

2.81, 2.82, 2.85,2.87, 2.88, 2.93, 2.95, 2.96, 

2.97, 3.09, 3.11, 3.11, 3.15, 3.15, 3.19, 3.22, 

3.22, 3.27, 3.28, 3.31,3.31, 3.33, 3.39, 3.39, 

3.56, 3.60, 3.65, 3.68, 3.70, 3.75, 4.20, 4.38, 

4.42, 4.70, 4.90 (See Staudte and Sheather 

(1990)). 

  

( )2 1

2

2 x e

( 1)

xx
   



− −+ +

+
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Table 5. The ML estimates,-2 log-likelihood, AIC, BIC, and CAIC for Data Set II. 
Model density     AIC BIC -2L CAIC 

two-

parameter 

L1 

( )2 e

1

xx  



−+

+
 

0.73366 0.0005 228.0497 232.429 224.0497 228.2402 

gamma 

Lindley ( )( )
( )

2 1 e

1

xx    

 

−+ − +

+
 

0.7201 54.8936 228.413 232.792 224.413 228.604 

quasi 

Lindley ( )e

1

xx   



−+

+
 

1.0899 0.000302 241.962 246.341 237.962 242.153 

new quasi 

Lindley 
( )2

2

e xx   

 

−+

+
 

0.7217 54.88575 228.505 232.884 224.505 228.695 

two 

parameter 

L2 

( )2 1 e xx  

 

−+

+
 

0.7226 71.85723 228.534 232.914 224.534 228.725 

Power 

XLindley 

 1.5686 0.39675 423.317 427.697 419.317 423.508 

ZLindley ( )

( )

1 2 e

2 1

xx   



−+ +

+
 

0.4948 / 261.059 263.248 259.059 261.121 

Zeghdoudi ( )3 1 e

2

xx x 



−+

+
 

0.9688 / 215.452 217.641 213.452 215.514 

XLindley ( )

( )

2

2

2 e

1

xx  



−+ +

+
 

0.5149 / 256.929 259.118 254.929 256.991 

Exponential 
e x −

 
0.3624 / 267.988 270.178 265.988 268.051 

New-

XLindley 
( )1 e

2

xx   −+
 

0.5787 / 253.322 255.512 251.322 253.385 

Lindley ( )

( )

2 1 e

1

xx 



−+

+
 

0.5902 / 246.768 248.957 244.768 246.831 

Xgamma 
2 21 e

2

1

xx 




− 
+ 

 

+
 

0.8211 / 249.439 251.628 247.439 249.5014 

Square 

ZLindley ( )
( )

221 2 e

1

xx x   



−+ +

+
 

0.1742 / 191. 421 192. 132 189. 421 191. 732 

 

( )2 1

2

2 x e

( 1)

xx
   



− −+ +

+
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6. Conclusion 

A novel one-parameter distribution that 

is proposed and studied is called the 

"Square ZLindley distribution." Among the 

mathematically derived properties of SZLD 

are moments and related metrics. In 

addition, reliability parameters, hazard 

function, and mean residual life are 

obtained. The estimation of the SZLD 

parameters is done using the well-known 

likelihood technique. The generated MLEs 

are assessed using an extensive simulation 

study. Towards the end of this paper, the 

applicability of the new model is 

demonstrated using two real datasets.Out of 

a few popular distributions, the SZLD 

provides the best match. Potential directions 

for future research include examining 

maximum likelihood functions under 

various censoring schemes to increase the 

adaptability of the Square ZLindley hybrid 

model. The Square ZLindley hybrid 

distribution's parameter estimation could 

also be improved by investigating Bayesian 

estimation methods that include appropriate 

priors and risk functions. 
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